

Oscillazioni e onde

Corso di Fisica per CTF AA 2010/11

Oscillazioni

- circuito LC, sistema massa-molla, pendolo semplice
- oscillazioni smorzate; oscillazioni forzate, risonanza

Ottica geometrica

- riflessione, specchi
- rifrazione, fibre ottiche, diottri, lenti sottili, strumenti ottici

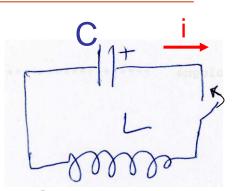
Onde e ottica fisica

- generalità, frequenza, lunghezza d'onda, velocità, intensità e ampiezza, principio di sovrapposizione, onde stazionarie
- onde acustiche, livello d'intensità
- principio di Huygens, diffrazione
- interferenza della luce, reticolo di diffrazione, polarizzazione

Oscillazioni

Circuito LC(*)

- t = 0, C carico, $q = q_0$
- chiudo il tasto: comincia a circolare i (le cariche + migrano verso l'armatura sinistra) ed entra in azione L, l'energia presente in



- C (E) passa in L (B), il processo continua finchè i diventa max e C è scarico (q=0), a quel punto i continua a caricare + l'armatura sinistra (per inerzia) e l'energia presente in L (B) è trasferita a C (E) ... e così via sempre oscillando (non ci sono R!): somma dell'en. di C (E) e di L (B) = cost.
- Kirchhoff, a t generico: Ldi/dt +q/C = 0 ossia Ld²q/dt² + q/C = 0 cioè $d^2q/dt^2 = -1/(LC)q = -\omega^2q$ $q(t) = q_0 cos\omega t$ soluzione del moto armonico $i(t) = dq/dt = -\omega q_0 sin\omega t$ $T = 2\pi/\omega = 2\pi\sqrt{LC}$

(Cfr.) Sistema massa-molla

- una massa oscilla attaccata ad una molla (ad es. sopra un piano senza attriti)
- A-mmon F F!
- per spostare la massa (molla)
 di dx dalla posizione (allungamento) x:

$$d\mathcal{L} = Fdx = -kxdx$$

$$\mathcal{L} = \int_0^x -kx dx = -k \int_0^x x dx = -\frac{1}{2}kx^2$$

(dalla posiz. di equilibrio a x)

$$\Delta W = \frac{1}{2}kx^2 = W(x) - W(0)$$

$$W(x) = \frac{1}{2}kx^2$$
 se pongo $W(0) = 0$

A, spostamento massimo: $W(A) = \frac{1}{2} kA^2$

en. cinetica della massa: $K = \frac{1}{2} \text{ mv}^2$

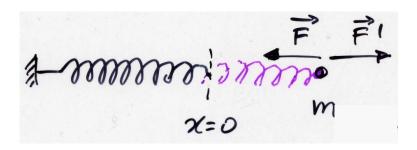
$$W(x) + K(x) = E_0$$

conserv. en. totale meccanica

$$[W(t) + K(t) = E_0$$

siccome x = x(t), v = v(t)!

Energia nel sistemi meccanici



en. della molla (potenziale)

en. della massa (cinetica)

$$W = \frac{1}{2}kx^2$$
 [cfr $\frac{q^2}{(2C)}$]

 $K = \frac{1}{2} mv^2$ [cfr Li²/2]

ampiezza del moto A

vel. massima v_{max}

en. totale:
$$E_0 = W(x) + K(x) = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2 = \frac{1}{2}mv_{max}^2$$

pongo

$$\omega^2 = k/m = (v_{max}/A)^2$$

eq. di moto
$$a = -(k/m)x = -\omega^2 x$$
 (II princ.: $ma = F = -kx$)

soluzione con x=+A per t=0, matematicamente:

$$x(t) = A\cos\omega t$$

moto armonico semplice

$$v(t) = -\omega A \sin \omega t$$
 (=dx/dt)

$$(=dx/dt)$$

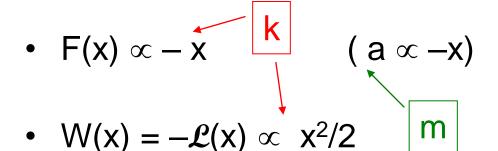
$$a(t) = -\omega^2 A \cos \omega t$$
 (=dv/dt)

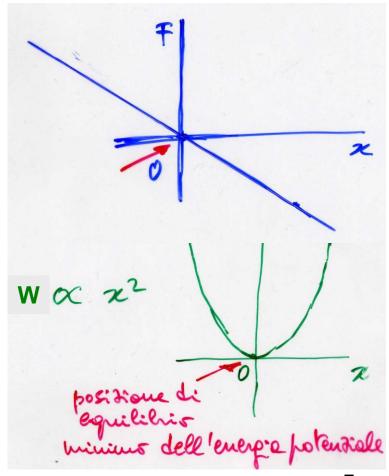
$$(=dv/dt$$

Oscillazioni armoniche

• <u>in generale</u>: un sistema oscilla intorno ad una posizione di equilibrio stabile – con moto armonico semplice se la

F di richiamo verso la posizione di eq. stabile è ∞ –spostamento e c'è un'inerzia che fa superare la posiz. di equil. continuando il moto (piccole oscillazioni del pendolo, massa-molla, circuito LC, molecola H_2)





Oscillazione (passo passo)

t	X	V	a	en.	E_0	sposto il sistema
0	+A	0	$-\omega^2 A$	pot.	$\frac{1}{2}kA^{2}$	dall'equilibrio e lo lascio andare
t_1	0	$-\omega A$	0	cin.	$\frac{1}{2}$ mv _{max} ²	
t_2	– A	0	$+\omega^2A$	pot.	$\frac{1}{2}kA^{2}$	
t_3	0	+ ωA	0	cin.	$\frac{1}{2}$ mv _{max} ²	
t_4	+A	0	$-\omega^2 A$	pot.	½kA ² il mo	oto si ripete uguale

- $t_4 = T$; $t_2 = t_4/2 = T/2$ per simmetria $t_1 = t_2/2 = T/4$; $t_3 = t_2 + (t_4 - t_2)/2 = 3T/4$ per simmetria
- $\omega = \sqrt{(k/m)} = v_{max}/A \rightarrow v_{max} = \omega A$

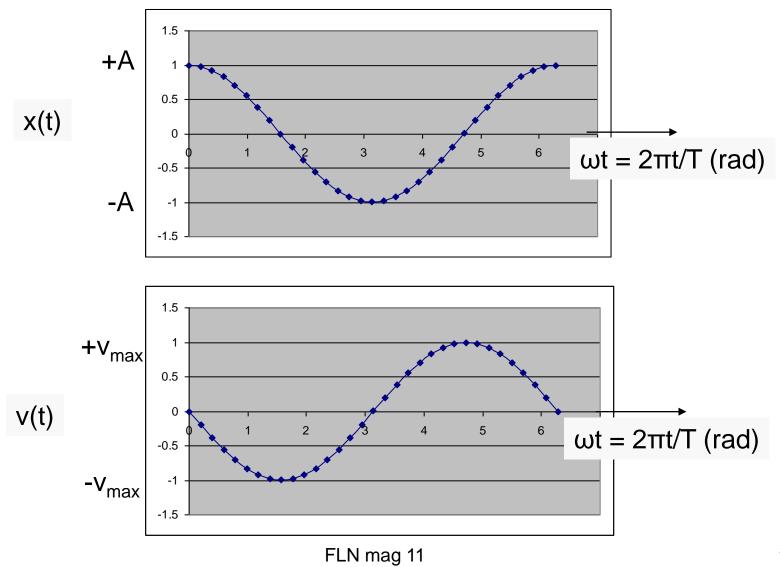
Soluzione (senza derivate)

- uso la cons. dell'en. meccanica (e m=k/ ω^2) $\frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2(x/A)^2 + \frac{1}{2}kA^2(v/(\omega A))^2 = \frac{1}{2}kA^2$ $\rightarrow (x(t)/A)^2 + (v(t)/(\omega A))^2 = 1$ cfr cos² Φ +sin² Φ =1 $\forall \Phi$
- se voglio x e v periodiche con periodo T prendo $x(t)/A = \cos(2\pi t/T) \qquad v(t)/(\omega A) = -\sin(2\pi t/T)$ che soddisfano x=A per t=0 e v(T/4)= - v_{max} = - ωA
- Tè un tempo caratteristico del sistema $T = 1/v = 2\pi/\omega = 2\pi\sqrt{(m/k)}$ l'unico dimensionalmente possibile $[\omega^{-1}] = [(m/k)^{0.5}] = [(M/(MT^{-2}))^{0.5}] = [T]$

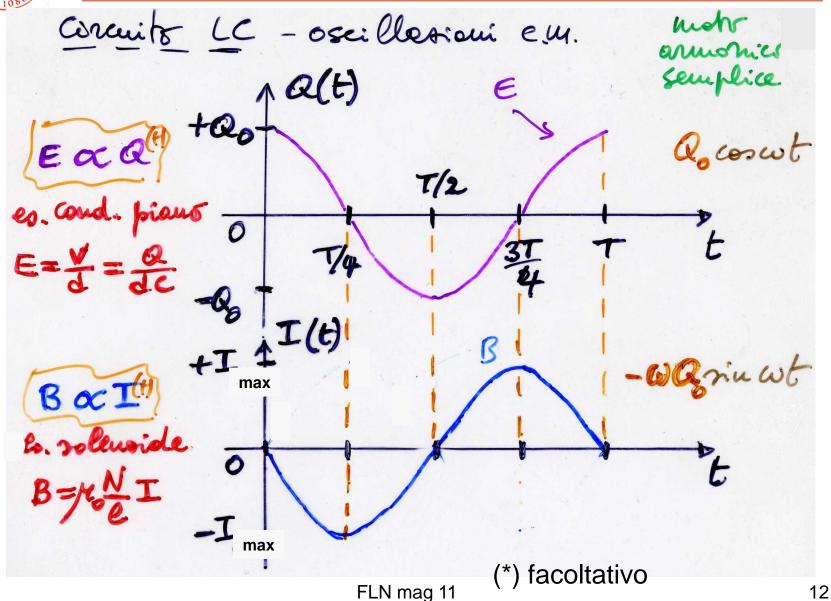
Oscillazioni (cont.)

- tutte le oscillazioni si comporteranno allo stesso modo, cambia solo ω (T) a seconda del sistema e cambia lo spostamento dalla posiz. di equilibrio (distanza, angolo, carica)
- massa-molla $\omega = \sqrt{(k/m)} \qquad T = 2\pi\sqrt{(m/k)}$ pendolo semplice $\omega = \sqrt{(g/L)} \qquad T = 2\pi\sqrt{(L/g)} \qquad \text{piccole oscillaz.}$ circuito LC $\omega = 1/\sqrt{(LC)} \qquad T = 2\pi\sqrt{(LC)}$ etc.
- spostamenti, velocità (lineari, angolari, correnti), accelerazioni (lineari, angolari, deriv. della corrente) saranno dati da funzioni sinusoidali (moto armonico semplice di pulsazione $\omega = 2\pi v = 2\pi/T$)

Oscillazioni (cont)

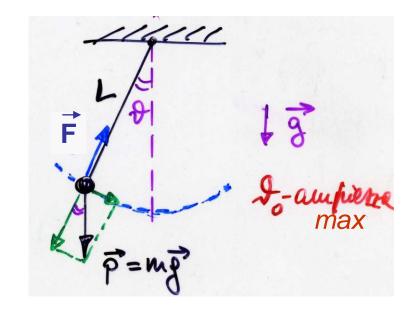


Oscillazioni (cont.)(*)



Pendolo semplice

- $mg cos\theta = F$ tensione del filo
- $-mg\sin\theta = ma = mL\alpha$
- piccole oscill. $\frac{1}{2} \overline{\theta_0}$ piccolo $\frac{1}{2}$ $\rightarrow \sin\theta \sim \theta$
- $-g\theta = L\alpha (= Ld^2\theta/dt^2)$ $\omega^2 = g/L$ $T = 2\pi\sqrt{L/g}$ indipendenti da θ_0



$$g = 4\pi^2 L/T^2$$
 misurando L,T \rightarrow g

• (*) [pendolo fisico: $m \rightarrow I$; $P \rightarrow M = L \land p(mg)$ $-mgLsin\theta = I\alpha$; $-mgL\theta = I\alpha$; $T = 2\pi\sqrt{mgL/I}$

con L distanza del baricentro dal centro di sospensione]

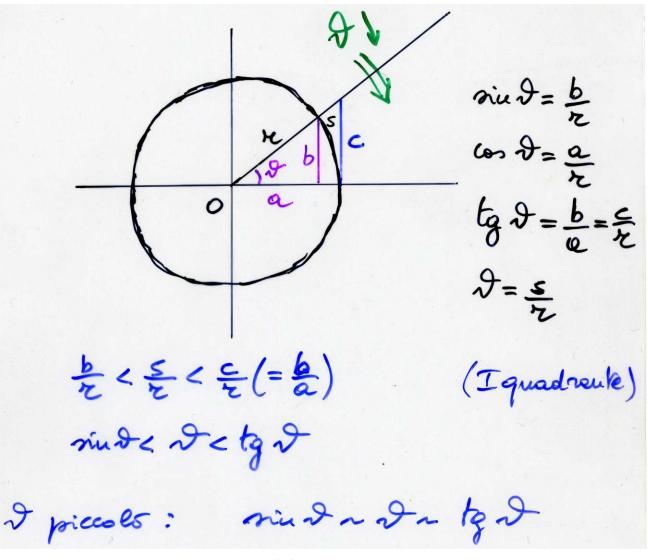
(*) paragrafo facoltativo

Angoli piccoli (*)

 θ =90°= 1.5708 rad $\sin\theta$ =1 $(\sin\theta-\theta)/\sin\theta$ =-0.57

 θ =30°= 0.5236 rad $\sin\theta$ =0.5 $(\sin\theta$ - θ)/ $\sin\theta$ =-0.047

 $\theta=3^{\circ}=0.05236 \text{ rad}$ $\sin\theta=0.05234$ $tg\theta=0.05241$ $(\sin\theta-\theta)/\sin\theta=$ =-0.00046 $(tg\theta-\theta)/tg\theta=$ =+0.00091



(*) facoltativo

Oscillazione e.m., applicazione

- supponiamo di avere una regione dello spazio vuota in cui è presente un campo E (o B) oscillante, per le leggi dell'e.m. sarà indotto un campo B (o E) oscillante
- qualitativamente, questi campi oscillanti generano onde e.m. che si propagano nello spazio con velocità $c = 1/\sqrt{(\epsilon_0 \mu_0)}$, con la frequenza ν dell'oscillazione, con lunghezza d'onda $\lambda = c/\nu$ e con densità di energia (vedi p. 55-58)

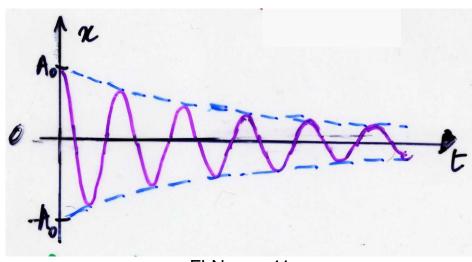
 $\eta_e + \eta_m = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2}B^2/\mu_0 = cost$ (mentre le oscillazioni sono confinate in una regione dello spazio, quindi hanno solo frequenza ν)

Oscillazioni smorzate (*)

sistema massa-molla con attrito

$$ma + \gamma v + kx = 0$$
 termine ∞v , attrito, smorzamento

- $\frac{1}{2}$ mv² + $\frac{1}{2}$ kx² = $\frac{1}{2}$ kA²(t) < $\frac{1}{2}$ kA₀² ad es. A(t) = A₀exp(- γ t/(2m))
- se γ≥2√(km) il moto è aperiodico
 se γ<2√(km) oscillazione con A decrescente



(*) facoltativo

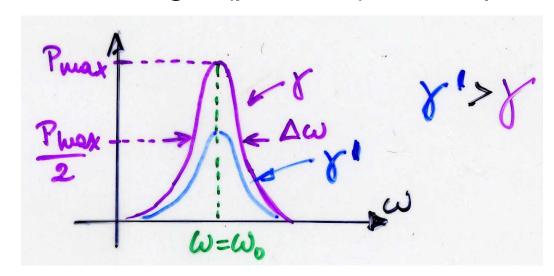
FLN mag 11

equilibrio

Oscillazioni forzate, risonanza (*)

- sistema sottoposto ad una F esterna sinusoidale $ma + (\gamma v) + kx = F(t) = F_e cos\omega t$ $\omega_0 = \sqrt{(k/m)} \quad v_0 = \omega_0/2\pi \qquad \text{frequenza propria del sistema}$
- se γ =0 il trasferimento di energia diventa ∞ per ω = ω_0 (in pratica si avrà una 'rottura')
- se γ≠0 il trasferimento di energia (potenza) è max per

 $\omega = \omega_0$: es. assorb. di radiazione e.m. da parte di atomi e molelole



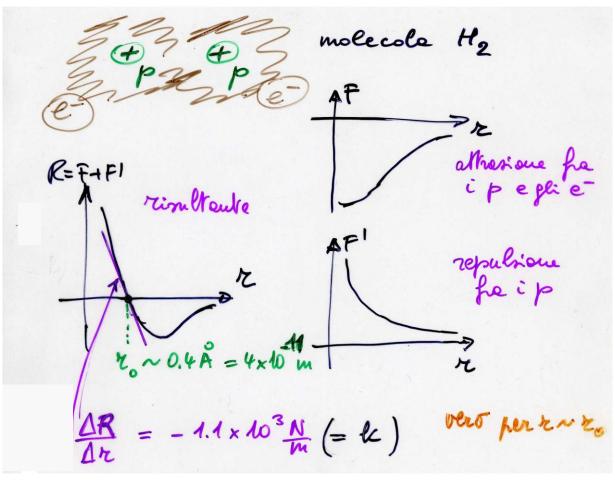
Oscillazioni, applicazione (*)

• molecola H_2 $\omega = \sqrt{(k/m)} = \sqrt{1.1 \cdot 10^{-3}/1.67 \cdot 10^{-27}} \sim 0.8 \cdot 10^{15} \text{ rad/s}$

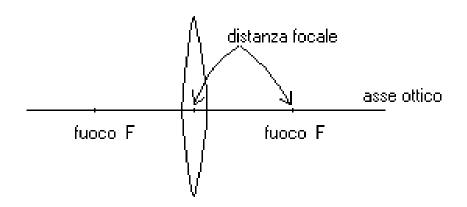
$$v = 1.3 \ 10^{14} \ Hz$$

$$\lambda = c/v = 2.5 \mu m$$

→ se si eccita H₂ con luce IR, si metterà ad oscill., assorbirà energia e posso 'vederlo'



(*) facoltativo



Ottica geometrica

FLN mag 11

19

La luce

- onda e.m.
$$V = \lambda \nu$$

- intensité:
$$I = \frac{1}{2} c \epsilon_0 E^2$$
 * energia/(m²s)

$$\lambda \in (\sim 10^{-18} \div \sim 10^{5}) \text{ m}$$

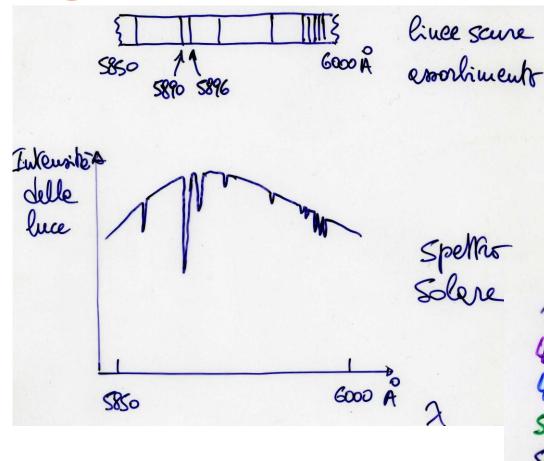
$$\lambda \in (\sim 10^{3} \div \sim 10^{26}) \text{ Hz}$$

$$\chi \in (0.4 \div 0.7) \times 10^{-6} \text{m} *$$

 $\chi \in (4.3 \div 7.5) \times 10^{-14} \text{Hz}$

* nel vuoto

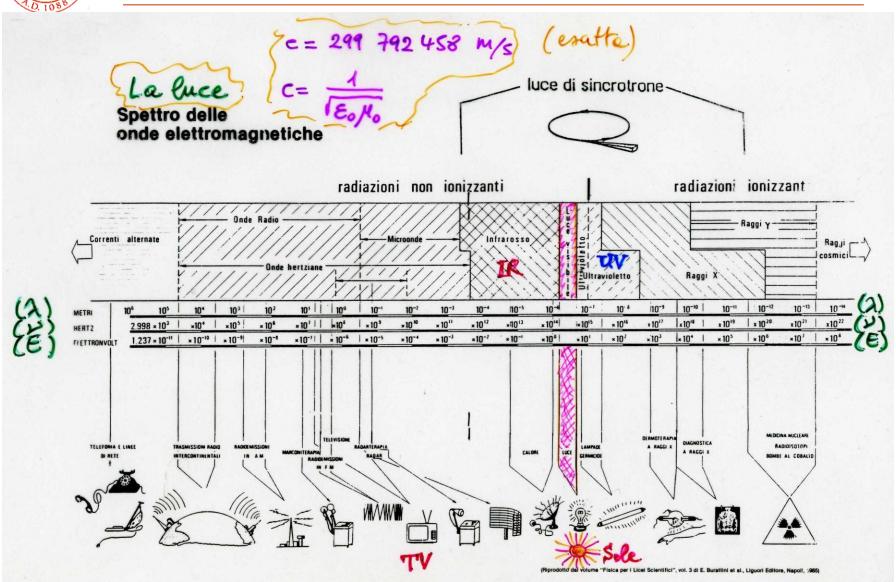
Luce visibile



legge di Wien $\lambda = 2.898 \text{ mm/T(K)}$

 $T_{\text{sup. sole}} \approx 5000 \text{ K}$

Spettro delle onde e.m. (*)



Propagazione della luce

- nel vuoto (dalle eq. di Maxwell, e.m.), velocità dell'onda
 c = 1/√(ε₀μ₀) = 299792458 m/s
 massima velocità di un segnale
- mezzi trasparenti omogenei e isotropi

$$\varepsilon = \varepsilon_r \varepsilon_0 \qquad \varepsilon_r > 1; \qquad \mu \sim \mu_0$$

$$v = 1/\sqrt{(\varepsilon_r \varepsilon_0 \mu_0)} = c/n \qquad \rightarrow \qquad n = \sqrt{\varepsilon_r}$$

indice di rifrazione

$$n = c/v$$
 $n \ge 1$

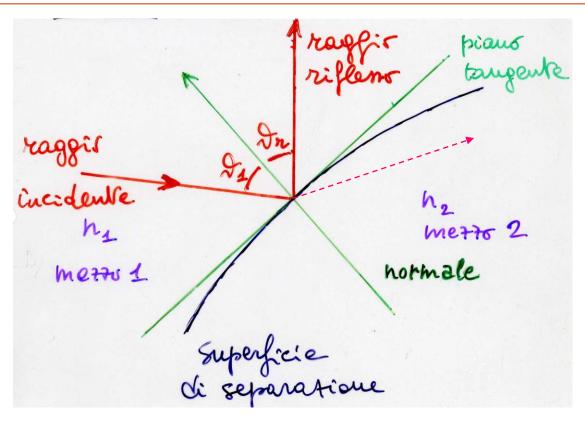
 mezzi assorbenti, metalli: sono parzialmente riflettenti (mentre parte dell'energia è assorbita entro 1-2 λ)



Condizioni dell'ottica geometrica

- limite per λ → 0 (dimensioni di ostacoli, disomogeneità etc., d >> λ)
- si considera la propagazione dei raggi luminosi
- nei mezzi trasparenti omogenei e isotropi la luce si propaga in linea retta
- i raggi luminosi sono deviati da ostacoli, disomogeneità etc.
 - → riflessione (nello stesso mezzo) al confine fra mezzi diversi
 - → rifrazione (nel secondo mezzo) al passaggio fra mezzi diversi

Riflessione



- leggi della riflessione
 - r. incidente, normale, r. riflesso ∈ stesso piano

$$-\theta_r = \theta_1$$

$$-I_{inc.} = I_{rifl.} + I_{trasm.}$$

(cons. dell'energia)₂₅

Riflessione, potere riflettente

- $R = I_r/I_i \le 1$ potere riflettente
- incidenza normale $(\theta_1 = 0)$
 - aria-metallo, specchi, R: ~0.9(Ag), ~0.8(Al), ~0.6(Fe)
 (da un mezzo trasparente ad uno assorbente)
 - mezzo trasparente 1 mezzo trasparente 2

$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2 = \left(\frac{v_1 - v_2}{v_1 + v_2}\right)^2$$

ad es. aria-vetro, lenti: $n_1 \sim 1$, $n_2 \sim 1.5$, R ~ 0.04 (\rightarrow la riflessione non è il fenomeno dominante)

- incidenza rasente ($\theta_1 = 90^\circ$)
 - R = 1

Sistema ottico

- fa corrispondere un'immagine ad un oggetto oppure viceversa: si propagano i raggi luminosi, reversibili
- stigmatico: ad un punto oggetto corrisponde un solo punto immagine (punti coniugati)
- se il sistema è stigmatico, basta conoscere due raggi per trovare la corrispondenza (altri r. possono servire per verificare che la corrispondenza trovata è corretta)
- ad es. riflessione: specchio piano, specchio sferico etc.; rifrazione: lenti, microscopi etc.

Specchio piano

costruzione dell'immagine: l'immagine è virtuale diritta, non vi passa energia

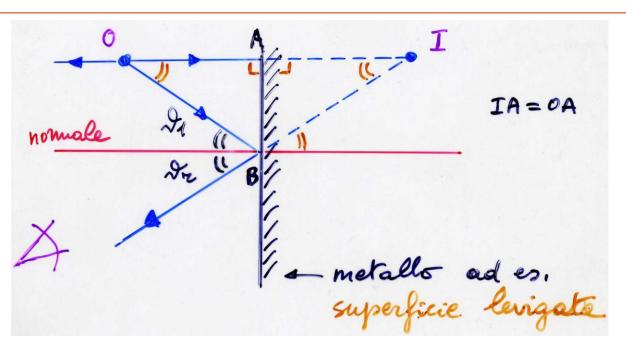
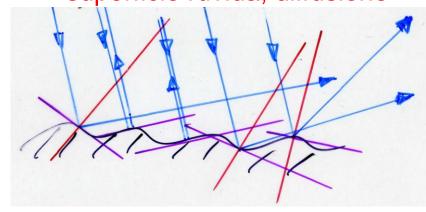


immagine trasversa e longitudinale

ogsette inmagine

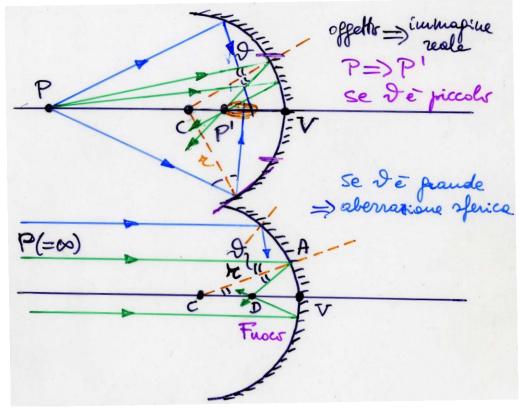
superficie ruvida, diffusione



ingrandimento: +1(t), -1(l)

Specchi sferici, fuoco (*)

- C centro di curvatura, r raggio, V vertice
- CV asse ottico
- lo sp.sf. è stigmatico se la calotta in V è piccola, θ piccolo
- AD = CD; AC = r
- $CD^2 = AC^2 + AD^2 -$ - 2AC-ADcosθ



$$CD^2 = r^2 + CD^2 - 2r \cdot CD\cos\theta$$

$$CD = r/(2\cos\theta)$$

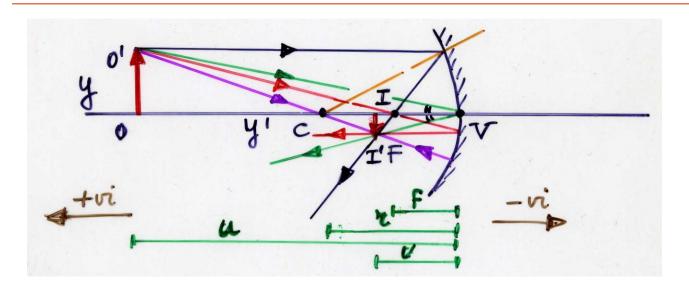
$$(\theta \neq 0, \cos \theta \neq 1: 5^{\circ}, 0.9962; \Delta \sim 4\%)$$

se
$$\theta$$
~0, CD=DV=r/2 [

$$f = r/2$$

se $\theta \sim 0$, CD=DV=r/2 \longrightarrow f = r/2 fuoco, coniugato di P= ∞

Costruzione dell'immagine con lo specchio sferico(*)



- → raggio || all'asse, si riflette passando per F
- → passante per F, si riflette || all'asse
- \rightarrow passante per C (θ_1 =0), si riflette nella direz. d'incidenza
- → passante per V: OO'V e II'V simili → OO'/u = II'/v

$$m = y'/y = -v/u$$

ingrandimento lineare trasversale

Formula dei punti coniugati(*)

- O e I, O' e I' p. coniugati
- OO'V e II'V simili:

$$OO'/II' = u/v$$

OO'C e II'C simili

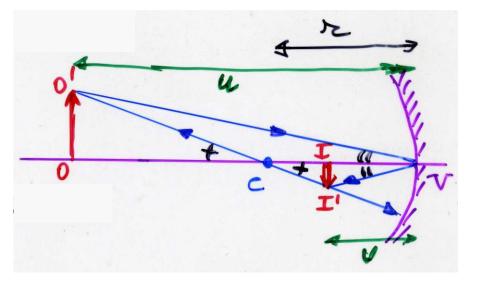
$$OO'/II' = (u-r)/(r-v)$$

$$\rightarrow$$
 u/v = (u-r)/(r-v)

$$ru-uv = uv-rv$$

$$1/v - 1/r = 1/r - 1/u$$

$$1/u + 1/v = 2/r = 1/f$$

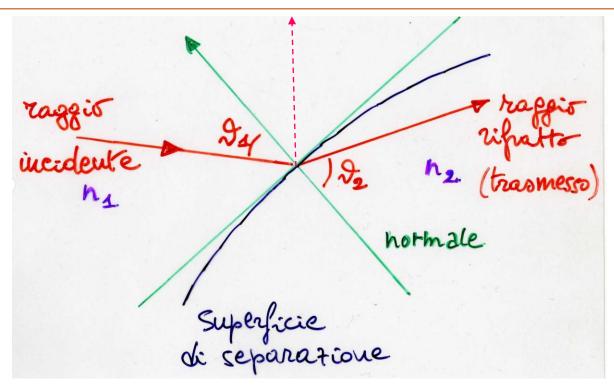


(moltiplico per 1/(ruv) a dx e sx)

formula dei punti coniugati (degli specchi)

(*) facoltativo

Rifrazione



- leggi della rifrazione (trasmissione)
 - r. incidente, normale, r. rifratto (trasmesso) € stesso piano

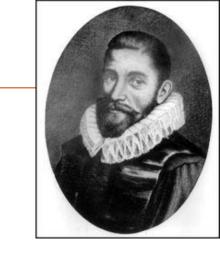
$$-\sin\theta_2 = (n_1/n_2)\sin\theta_1$$
 (legge di Snell)

$$-I_{inc.} = I_{rifl.} + I_{trasm.}$$

(cons. dell'energia)

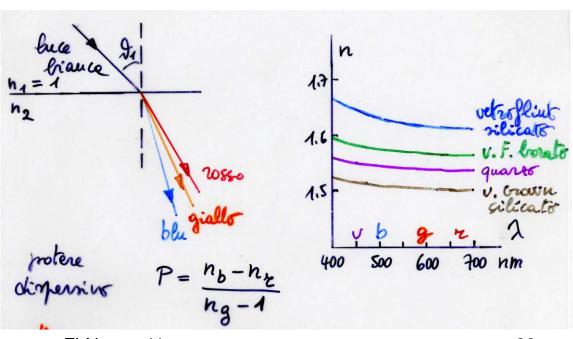
Legge di Snell

- $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- per angoli piccoli, $\sin\theta \sim \theta \rightarrow n_1\theta_1 = n_2\theta_2$ es. aria-vetro $\theta_1 = 15^\circ$, $n_{aria} = 1$, $n_{vetro} = 1.52$ $\sin\theta_1/\sin\theta_2 = 1.52$; $\theta_1/\theta_2 = 1.53$; $\Delta=7\%$



- anche $\sin\theta_1/v_1 = \sin\theta_2/v_2$ oppure $\sin\theta_1/\lambda_1 = \sin\theta_2/\lambda_2$
- dispersione, $n = n(\lambda)$

potere dispersivo $P \sim 0.009/0.5 = 1.8\%$ (vedi pag. 51)



Legge di Snell (2)

 n₁ < n₂ (da un mezzo otticamente meno denso ad uno più denso)

```
\sin\theta_2 = (n_1/n_2)\sin\theta_1 < \sin\theta_1 \rightarrow \theta_2 < \theta_1
il raggio rifratto si avvicina alla normale
es. H<sub>2</sub>O-vetro n_1 = 1.33 n_2 = 1.52, \sin\theta_2 = 0.875 \sin\theta_1 \rightarrow \sec\theta_1 = 30^\circ, \theta_2 = 25.9^\circ
```

 n₂ < n₁ (da un mezzo otticamente più denso ad uno meno denso)

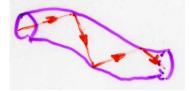
```
\sin\theta_2 = (n_1/n_2)\sin\theta_1 > \sin\theta_1 \rightarrow \theta_2 > \theta_1
il raggio rifratto si allontana dalla normale
es. H<sub>2</sub>O-vetro n_1 = 1.52 n_2 = 1.33, \sin\theta_2 = 1.14 \sin\theta_1 \rightarrow \sec\theta_1 = 30^\circ, \theta_2 = 34.8^\circ
```


Riflessione totale

• $n_1 > n_2$: se aumento θ_1 aumenta anche θ_2 ... fino a che è possibile, si arriva a $\theta_2 = \pi/2$ e allora non ci sarà più rifrazione, ma solo riflessione (riflessione totale); l'angolo θ_1 corrispondente si chiama angolo limite

$$\sin \theta_{1 \text{lim}} = (n_2/n_1) \sin(\pi/2)$$
 $\theta_{1 \text{lim}} = \arcsin(n_2/n_1)$

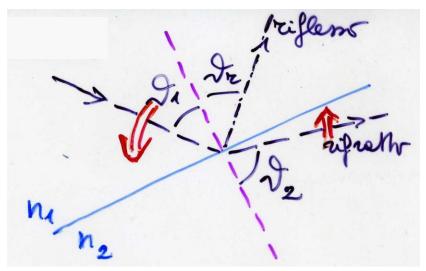
• per $\theta_1 > \theta_{1 \text{lim}}$ si ha riflessione totale, potere riflettente R=1 (guide di luce, fibre ottiche: comunicazioni, endoscopia)



es. vetro-aria

$$n_1 = 1.52; \quad n_2 = 1$$

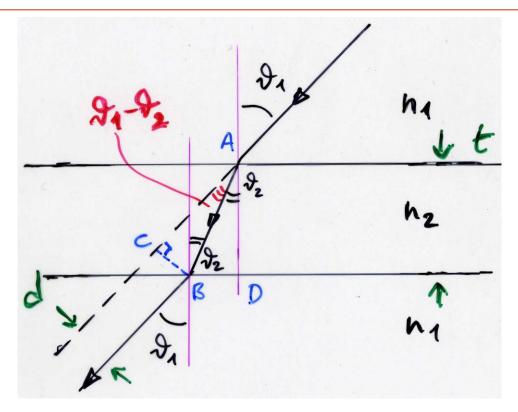
 $\theta_{1lim} = \arcsin(1/1.52) = 41.1^{\circ}$



Passaggio attraverso una lastra piano-parallela (*)

 $AB = t/\cos\theta_2$

CB = AB sinCAB

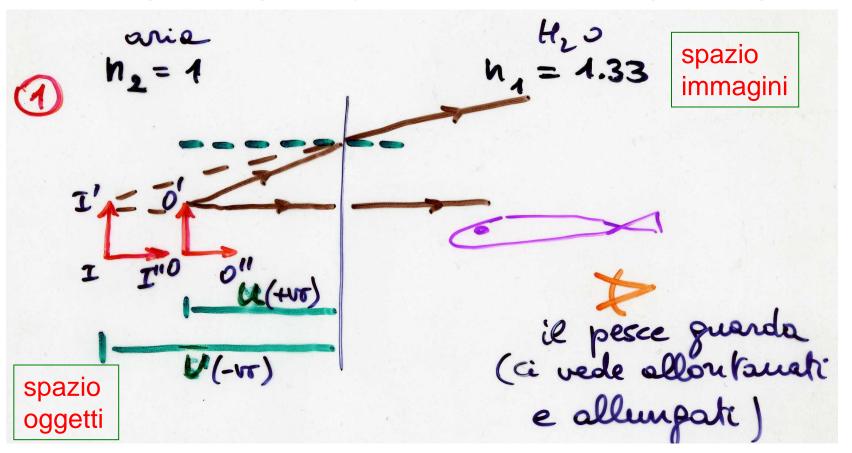


- lastra trasparente di spessore t = AD, spostamento d = CB
 - 1a rifrazione $n_1 \sin \theta_1 = n_2 \sin \theta_2$
 - 2a rifrazione $n_2 \sin \theta_2 = n_1 \sin \theta_1$
- $d = t \sin(\theta_1 \theta_2)/\cos\theta_2$

(*) facoltativo

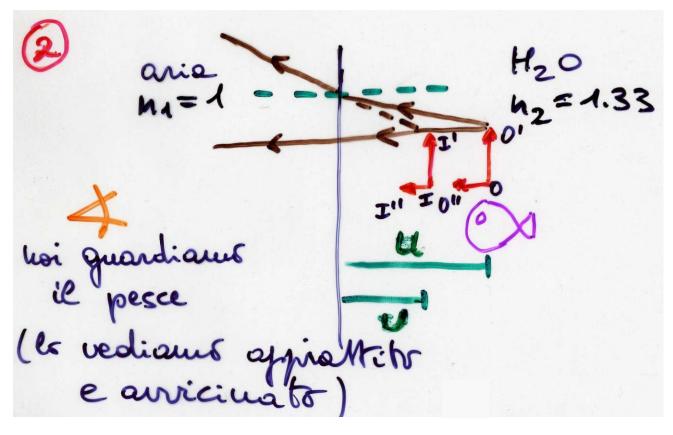
Diottri piani(*)

 un diottro piano è formato da due mezzi trasparenti separati da una superficie piana (u e v sono +vi nei rispettivi spazi)



 $m_{trasv} = +1$, immagine virtuale diritta; $m_{longit} = -v/u = +n_1/n_2$ (*) facoltativo

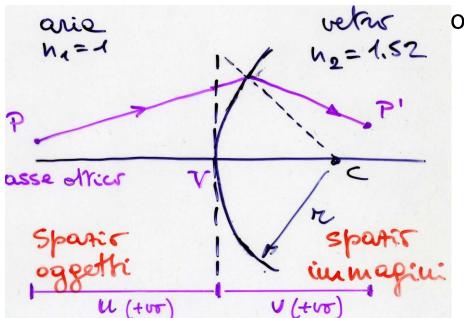
Diottri piani (2)(*)



- $m_{trasv} = +1$, immagine virtuale diritta; $m_{longit} = -v/u = +n_1/n_2$
 - 1 $n_2/u + n_1/v = 0;$
- $n_2/u + n_1/v = 0$

Diottri sferici e lenti

diottro sferico



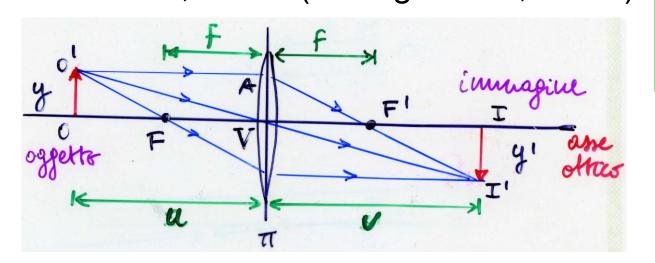
o altro materiale trasparente

- diottro: due mater. traspar. separati da una superf. sferica
- lente: due diottri, di cui almeno uno sferico; i raggi che la attraversano subiscono una doppia rifrazione
- (i diottri e) le lenti, se valgono le approssimazioni (di Gauss)
 1) onde monocromatiche 2) piccola apertura 3) raggi parassiali,
 sono un sistema stigmatico (punto oggetto punto immagine) altrimenti: aberrazioni

VWILL TO 1088

Lenti sottili

 lente sottile: spessore trascurabile, al limite un piano (π), due fuochi, F e F' (coniugati di P,P' = ∞)



u (v) – posizione dell'oggetto (immagine)

l'asse ottico congiunge FF' (o i centri di curvatura)

- OO'V e II'V simili: OO'/II' = u/v
- AVF' e II'F' simili: OO'/II' = f/(v-f)

•
$$u/v = f/(v-f)$$
 $\rightarrow uv - uf = fv$ [moltiplico per 1/(uvf) a dx e sx]

1/u + 1/v = 1/f
 formula dei punti coniugati (delle lenti), f distanza focale₄₀

Lenti sottili (2)

- una lente ha due fuochi, F e F', equidistanti da V, punti coniugati dei punti all'∞ (1/v = 1/f – 1/∞ = 1/f etc.)
- considerando la lente costituita da due diottri sferici, di raggio di curvatura r₁ e r₂, si può mostrare che

$$1/f = (n-1)(1/r_1 + 1/r_2)$$

con n indice di rifrazione del materiale della lente (immersa in aria), tipicamente ~ 1.5 (vetro, plastica); [cfr con lo specchio sferico: 1/f = 2/r]

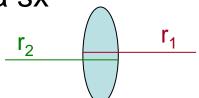
- lente convergente: più spessa al centro, f +va lente divergente: più spessa ai bordi, f –va
- l'inverso di f (in m) si chiama potere diottrico P = 1/f della lente e si misura in diottrie (D)

Lenti sottili (3) (*)

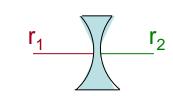
risolviamo per f la formula dei costruttori di lenti (col mcm)

$$1/f = (n-1) [r_2 + r_1]/(r_1 r_2) \Rightarrow (n-1)f = r_1 r_2/(r_2 + r_1)$$

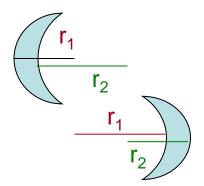
- lente di vetro in aria: n-1 ≈ 0.5 +vo; oggetto a sx
- lente convessa-convessa r₁ +vo r₂ +vo
 ⇒ f +vo sempre; lente convergente



lente concava-concava r₁ -vo r₂ -vo
 ⇒ f -vo sempre: numer. +vo, denom. –vo;
 lente divergente

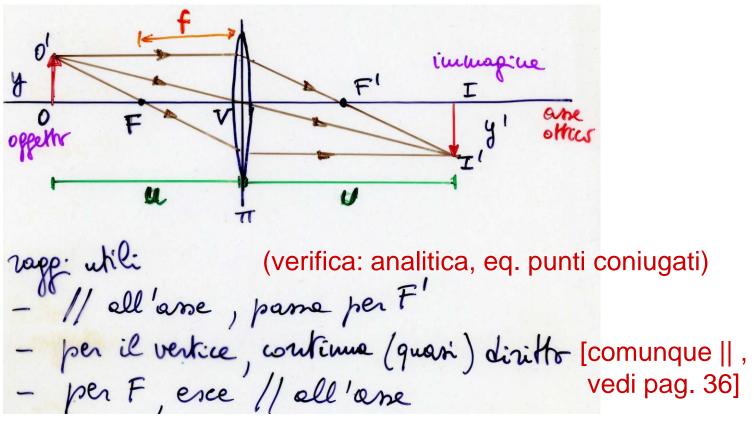


• lente convessa-concava r_1 +vo r_2 -vo \Rightarrow f +vo (-vo) se $|r_2| > |r_1|$ (< $|r_1|$)



- lente concava-convessa r_1 +vo r_2 –vo \Rightarrow f -vo (+vo) se $|r_2| > |r_1|$ (< $|r_1|$)
- lente di aria in vetro: 1-n ≈ -0.5 -vo ... e cambiano i segni!

Costruzione dell'immagine

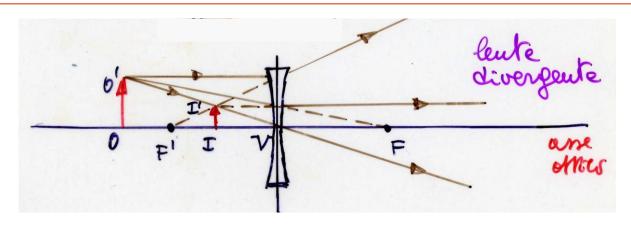


ingrandimento lineare trasverso

OO'V simile a II'V

$$m = y'/y = -v/u$$
 = - $(v-f)/f = -f/(u-f)$

Lente divergente



- lente divergente, più spessa ai bordi (ad es. se i due diottri sono concavi): raggi da P=∞, dopo la doppia rifrazione, provengono da F' (quelli da P'=∞, da F); se si usa la formula di pag. 41-42, f risulta –va (sia r₁ che r₂ sono –vi)
- il terzo raggio utile passa per V ed esce parallelo a se stesso (estrapolato all'indietro è sempre nella stessa direzione)
- l'immagine è sempre virtuale, diritta, rimpicciolita: risolvendo per v l'eq. dei punti coniugati 1/v = 1/f -1/u = (u-f)/(uf) si ha v = uf /(u-f) sempre -va, visto che u è +va e f -va

Lenti sottili, posizione e tipi di immagine

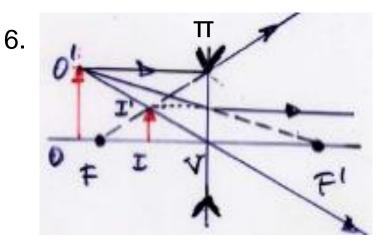
eq. dei punti coniugati: v =uf/(u-f); m = -v/u

2.
$$u = 2f$$
 $v = 2f$ " unitaria

3.
$$f < u < 2f$$
 $v > 2f$ " ingrandita

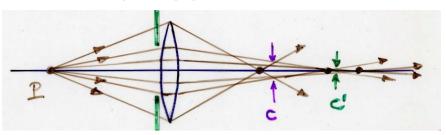
4.
$$u = f v = \infty$$
 "



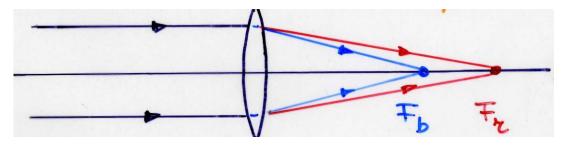


Aberrazioni delle lenti

- aberrazione sferica (simile agli specchi): oggetto sull'asse
 - diaframma, però si riduce la luce
 - -C, C' cerchi di minima confusione
 - oppure sup. non sferiche (parabol.)



- altri effetti geometrici
 - coma/astigmatismo: oggetto poco/molto fuori asse
 - distorsione: l'ingrandimento varia con la distanza dall'asse
- aberrazione cromatica, dispersione (assente negli specchi)
 - combinazioni di lenti con dispersione diversa



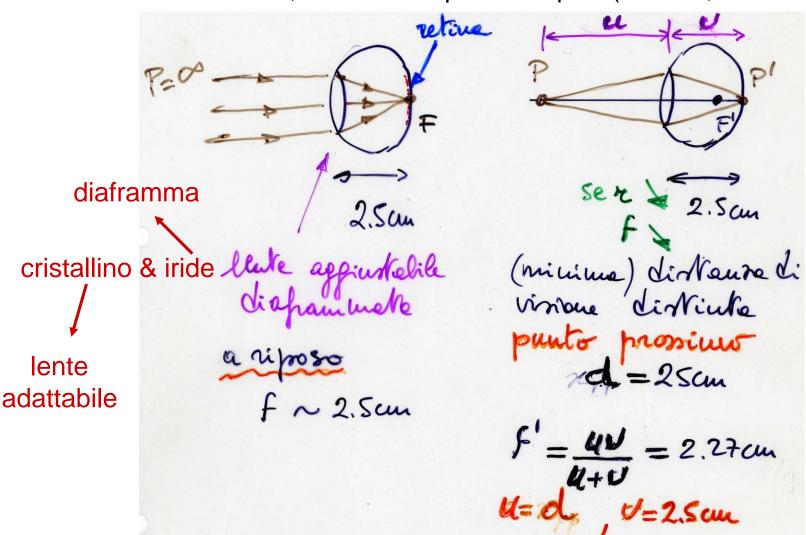
vetro crown K3:

$$n_{blu} = 1.525$$

$$n_{rosso} = 1.516$$

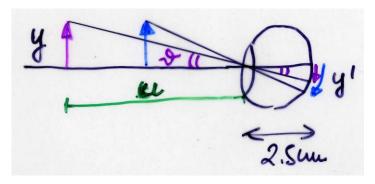
L'occhio

retina - visione b/n, bastoncelli: pixel 1x1 μm² (a colori, coni 4 x 4 μm²)



L'occhio (2)

grandezza apparente di un oggetto



 y' lunghezza dell'immagine sulla retina, l'angolo sotto cui vedo l'oggetto di lunghezza y è

$$\theta = y'/2.5cm$$

d'altra parte $tg\theta = y/u \sim \theta$ (angoli piccoli)

$$y' = 2.5 \text{ cm } y/u$$

y' cresce se y 🖍 e se u 💃

la risoluzione angolare dei pixel è 4µm/2.5cm ~ 1.6 10⁻⁴ rad

La lente d'ingrandimento

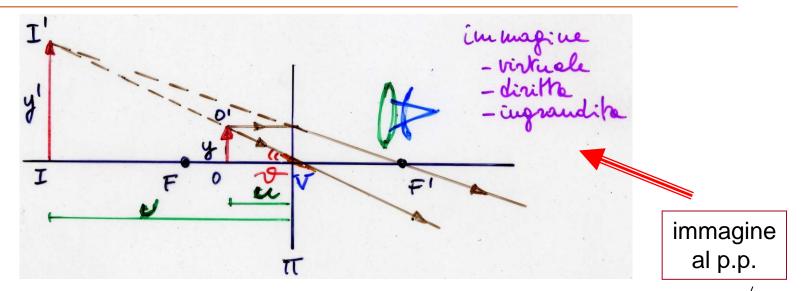


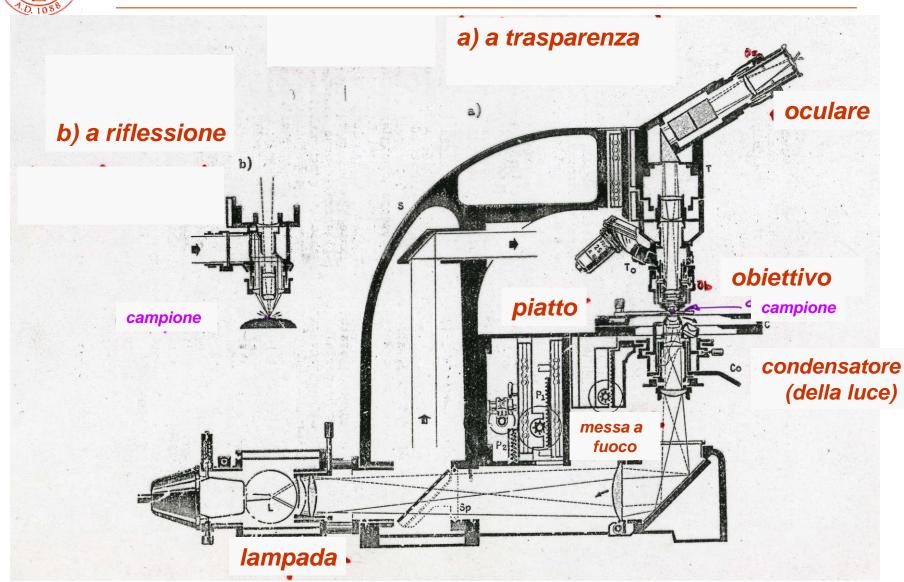
immagine all'∞

- a occhio nudo: $tg\theta_0 = y/d = y/25cm \sim \theta_0$ oggetto avvicinato alla distanza di visione distinta
- con la lente (convergente): $tg\theta = y/u \sim \theta$ (= y'/v) vicino all'occhio
- ingrandimento angolare o visuale

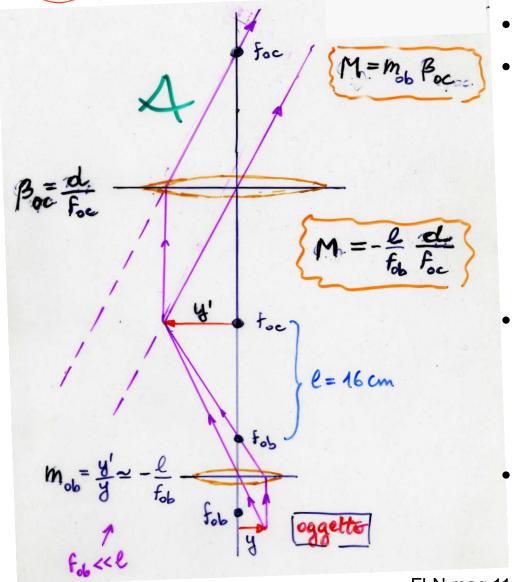
$$\beta = \theta/\theta_0 = d/u \approx 25$$
cm/f $(\beta = m = -v/u = 1 + 25$ cm/f) in pratica $f_{min} \sim 2.5$ cm (40 D) $\rightarrow \beta_{max} \sim 10$ (compensando le

aberrazioni si arriva a 40, microscopio semplice)

Microscopio ottico composto



Microscopio ottico (2)



- l'immagine finale è invertita
- l'oggetto è posto vicino a
 F_{ob}, l'immag. reale si forma
 in F_{oc} ed è vista dall'oculare:
 → l'ingrandim. è il prodotto
 dell'ingr. lineare dell'obiettivo
 per quello visuale
 dell'oculare (lente d'ingr.)
- con f_{ob}~4 mm, f_{oc}~10 mm si ha, per costruzione,

$$M \sim -(16 \text{cm/f}_{ob})(25 \text{cm/f}_{oc})$$

= -1000

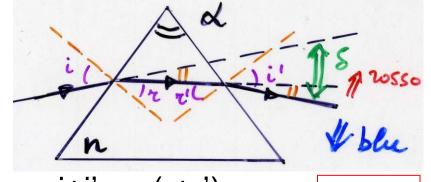
in pratica la limitazione è data dalla λ della luce (vedi oltre, pag. 100-101)

Prisma(*)

deflessione

$$\delta = (i-r)+(i'-r') = (i+i')-(r+r')$$

 $\alpha+(90^{\circ}-r)+(90^{\circ}-r') = 180^{\circ}$
 $\rightarrow \alpha = r+r'$



es. α=60° n=1.52

•
$$\delta \approx (n-1)(r+r') = (n-1)\alpha$$

es.
$$\delta = 31.2^{\circ}$$

dispersione e potere dispersivo

$$\begin{split} n &= n(\lambda) & \Delta \delta/\Delta \lambda = \alpha \Delta n/\Delta \lambda \\ n_b &= 1.525 \quad n_r = 1.516 \quad \Delta \delta = 0.54^\circ \text{ rosso-blu} \\ \Delta \delta/\delta &= \Delta n/(n-1) = 1.7\% \text{ vetro crown K3} & \forall \ \alpha \end{split}$$

Onde

FLN mag 11 53

Richiamo: oscillazioni e oscillazioni armoniche

ripetendo e riassumendo:

- y: "spostamento dalla posizione di equilibrio, y=0" (spostamento generalizzato: lineare, angolo, carica etc.); forza di richiamo "elastica"; inerzia che fa superare y=0
- oscillazione in genere

$$y = y(t)$$
 con y fra $(-A,+A)$

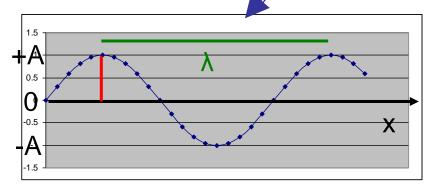
- fenomeno temporale periodico
- regione spaziale fissata e limitata
- energia E ∝ A², confinata
- oscillazione armonica, $\omega = 2\pi v = 2\pi/T$, $y = A\sin(\omega t + \delta) = A\sin[\omega(t + t_0)]$ dove $(\omega t + \delta) = \omega(t + t_0)$ è la fase

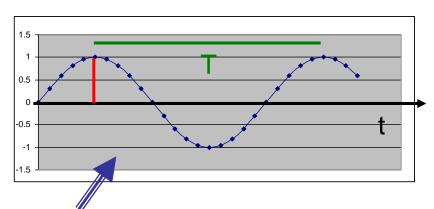
Proprietà fondamentali delle onde

- Moto ondoso: trasferimento di energia da un punto P ad un altro Q senza trasferimento di materia
 - onde meccaniche (onde d'acqua, su corde tese, suono)
 hanno bisogno di un mezzo per propagarsi
 - onde e.m. (luce, onde radio, raggi X) possono viaggiare nel vuoto e la loro propagazione è modificata dalla presenza di materia
- Un'o. meccan. viaggia da P a Q perchè una perturbazione ha causato lo spostamento di una particella in P. Questa trascina una p. vicina che è spostata a sua volta e così via, fino a che la perturbazione raggiunge Q dopo un certo tempo (ritardo). Se il materiale è elastico, le particelle oscillano intorno alla loro posizione di equilibrio.

Proprietà fondamentali delle onde (2)

- Se la perturbazione è ripetitiva si propaga un'onda, altrimenti si ha un impulso.
- Se la perturbazione alla sorgente è armonica semplice, il grafico degli spostamenti delle particelle a t fisso è una sinusoide.





 Se consideriamo il movimento di una singola particella nel tempo (a x fisso, x direzione di propagazione) si ha un moto armonico semplice.

Proprietà fondamentali delle onde (3)

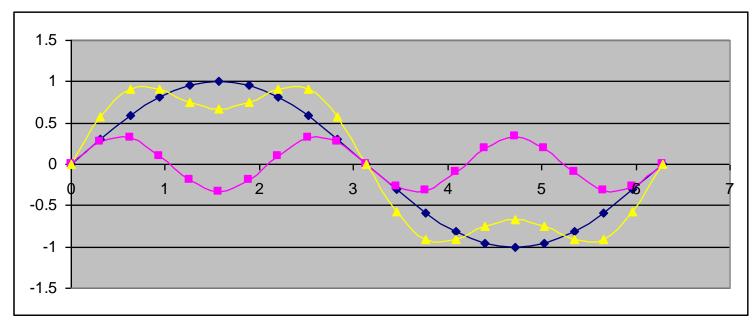
- Ampiezza (A): il più grande spostamento di ∀ partic.
 rispetto alla posiz. di equilibrio (ad es.).
- Lunghezza d'onda (λ) : distanza fra due particelle con lo stesso moto (fase) ad es. fra due creste (o due valli).
- Periodo (T = $1/v = 2\pi/\omega$) : tempo impiegato da ogni particella per una oscillazione completa, tempo impiegato da un'onda per percorrere una λ .
- Quindi la velocità dell'onda (spazio percorso/tempo impiegato) è

$$v = \lambda/T = \lambda v$$
 valida per \forall onda.

Principio di sovrapposizione

- v e λ dipendono dal mezzo in cui l'onda si propaga,
 v (o T) dipende esclusivamente dalla sorgente
- Un'onda e.m. consiste di un E(x,t) accompagnato da un B(x,t) [come visto in e.m. E produce B che produce E etc.]: come ampiezza si prende di solito E.
- Principio di sovrapposizione : se ci sono due o più onde dello stesso tipo che viaggiano nella stessa direzione, lo spostamento totale è la somma algebrica degli spostamenti nel punto. Sommando onde di v ed A diverse, opportunamente scelte, si può riprodurre ∀ forma d'onda (teorema di Fourier) nella stessa direzione.

Principio di sovrapposizione (2)

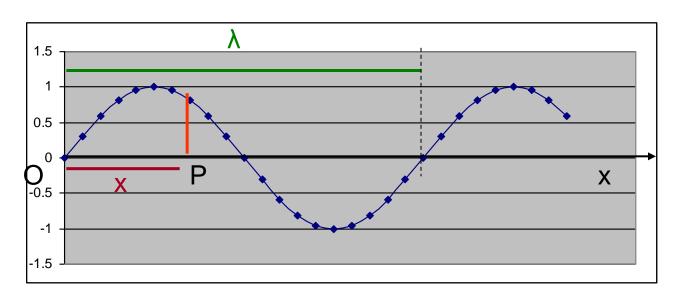


Se le onde non viaggiano nella stessa direzione, ma si incontrano solo in qualche punto, esse emergono dopo l'incrocio nella stessa forma che avevano prima dell'incontro.

Principio di sovrapposizione (3)

- Se hanno λ uguale e arrivano insieme con creste coincidenti sono in fase, se sono sfasate di π sono in opposizione di fase.
- I fenomeni dell'interferenza, diffrazione, battimenti ed onde stazionarie sono tutti conseguenza del principio di sovrapposizione
- (Assumendo y = 0 per t = 0), lo spostamento y a t generico di una particella che oscilla di m.a.s. di frequenza v (periodo T) può essere rappresentato come y = Asin2πt/T = Asin2πvt

Forma matematica di un'onda sinusoidale



In un'onda sinusoidale (λ = 2π/k e T o ν = ω/2π), tutte le particelle oscillano sinusoidalmente: il moto delle particelle in P ritarderà di (x/λ)T rispetto ad O, ossia dovrò sostituire a t → t-(x/λ)T → y = Asin2π/T[t-(x/λ)T]

 $y = Asin2\pi[t/T-x/\lambda] = Asin2\pi\nu[t-x/\nu] = Asin(\omega t-kx)$

Dalle oscillazioni alle onde (*)

- trasferimento di E (ad es. serie di pendoli accoppiati: un pendolo oscillante trasferisce E al pendolo vicino inizialmente fermo e così via – ritardo, sfasamento)
- mezzo elastico (atomi oscillanti trasferiscono E agli atomi adiacenti – ritardo, sfasamento)
 - (d di trasferimento)/(t impiegato) = velocità di propagazione della perturbazione (onda)
- λ, lunghezza d'onda, minima distanza fra punti in concordanza di fase (dopo un periodo T)

$$V = \lambda/T = \lambda V$$

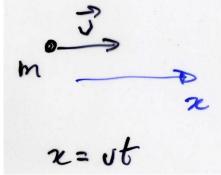
(T periodo del moto armonico semplice)

Onde (*)

- f(x,t) propagazione nello spazio (con velocità v) di una perturbazione oscillatoria (in t), ossia di energia
- es. onde liquide, serie di pendoli uguali, corda lunga/∞ tesa, onde sonore, onde e.m., tsunami
- la sorgente fissa la frequenza
 v = 1/T (parte temporale)
- il mezzo 'elastico' è perturbato (messo in oscillazione) al passaggio dell'onda, ma mediamente fermo – non si muove secondo v – serve da "sostegno" (un punto oscillante mette in agitazione oscillatoria il vicino, con un certo ritardo)
- l'energia si muove senza trasporto di materia

Movimento di onde e particelle (*)

particella



m.r.u.

$$E = \frac{1}{2}mv^2$$

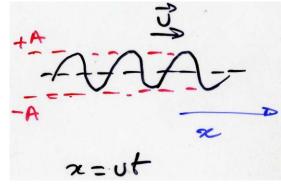
ci vuole una F

per accelerare

ad es. $\mathbf{F} = \Delta \mathbf{p}/\Delta t$

 $= m(\mathbf{v} - 0)/\Delta t$

onda



m.r.u.

$$E = \frac{1}{2}kA^2$$
 (+)

ci vuole una sorgente/**F** per accelerare/mettere in oscillazione il mezzo (sasso sul liquido, pendolo etc.)

(+) si usa $I = E/(t\hat{S})$

(*) in alternativa a pagg. 54-61

superf. [⊥] alla

propagazione

Rappresentazione matematica dell'onda (*)

 si può mostrare che la pertubazione y in un'onda progressiva (si muove nel verso +vo dell'asse x) è una funzione sia di x che di t ed è data da

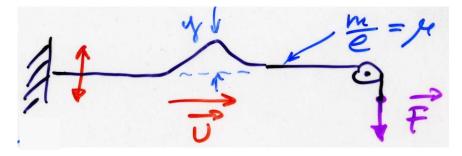
$$y = y(x,t) = y(x-vt)$$

dove v è la velocità di fase

es.1 onda impulsiva/impulso: corda tesa vibrante lunga 1
 y = y(x-vt)

è l'allontanamento dalla posizione di equilibrio, con

 $v^2 = F/\mu$ che dipende dall'elasticità (F) e dall'inerzia ($\mu = m/1$) del mezzo (vero in generale)



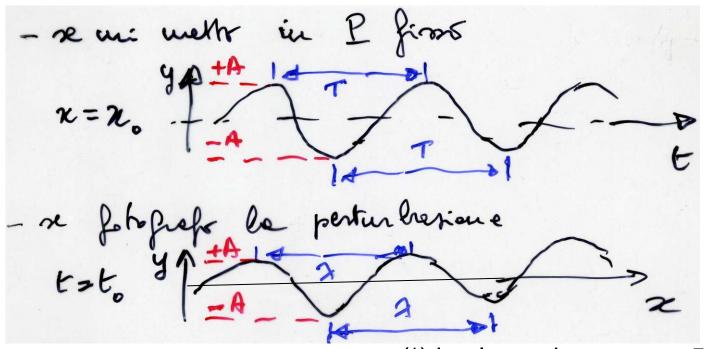
(*) in alternativ a pagg. 54-61

Rappresentazione matematica dell'onda (2) (*)

 es.2 onda armonica / periodica: l'eq. di un'onda piana monocromatica progressiva è

 $y = Asin[(2\pi/\lambda)(x-vt)]$

dove l'espressione in [] è la fase dell'onda



(*) in alternativa a pagg. 54-61

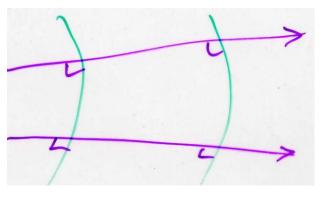
Rappresentazione matematica dell'onda (3)

- $v = \omega/2\pi$ dipende dalla sorgente
- v e λ dipendono dal mezzo

$$\lambda v = \lambda / T = v$$

- fase: descrive lo stato di oscillazione
- fronte d'onda / superficie d'onda: luogo dei punti con la stessa fase; ad es. onda piana, i fronti d'onda sono piani equidistanti λ; onda sferica, i fronti d'onda sono superfici sferiche equidistanti λ etc.

(cioè l'energia, la qdm) – li abbiamo usati in ottica geometrica



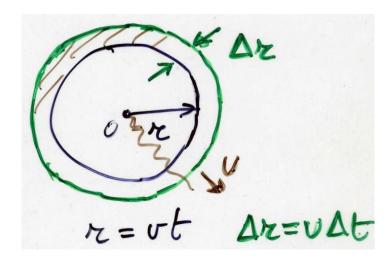
Energia e intensità, ampiezza

 l'intensità I è definita come la potenza media (nel t) divisa l'area della superficie

direz. di propagazione

$$I = E/(tS) = P_{media}/S$$
 in W/m²

- es. onda sferica $I = P_{media} / 4\pi r^2$ al tempo t l'energia è nulla fuori di una sfera di raggio r = vt
- l'en, che traversa S in Δt è $\Delta E = \eta \Delta V = \eta S \Delta r = \eta S V \Delta t$ ossia $P_{media} = \Delta E/\Delta t = \eta Sv$ \rightarrow I = P_{media}/S = ηv ma η \propto A² (moto armon. sempl.) \rightarrow I \propto A²



(η – densità di energia)

valida per ∀ onda

• onda sferica: $I \propto 1/r^2$; $A \propto 1/r$ (costanti per un'onda piana)

Velocità di propagazione dell'onda

si può mostrare che

corda tesa vibrante

$$v^2 = F/\mu$$

F tensione della corda, $\mu = m/lunghezza$

onde elastiche nei solidi

$$v^2 = Y/\rho$$

Y modulo di Young, ρ densità del mezzo

onde sonore nei gas

$$v^2 = B/\rho = \gamma RT/M$$

B modulo di volume, $\gamma = c_p/c_V$

onde e.m. nel vuoto

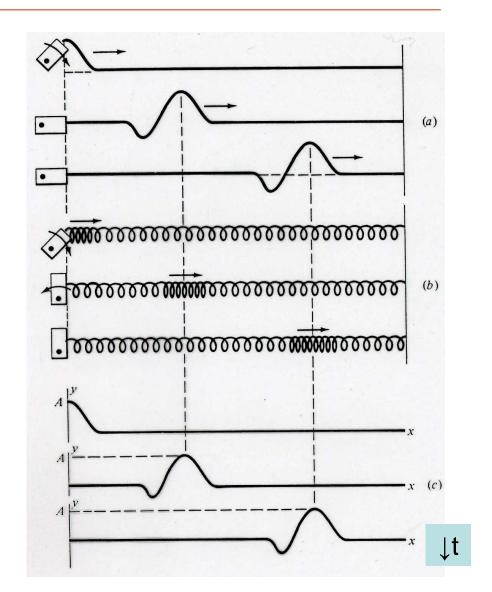
$$v^2 = c^2 = 1/(\epsilon_0 \mu_0)$$

etc. quindi in generale

 $_{
m V^2} \propto \frac{\mbox{(modulo di) elasticità del mezzo}}{\mbox{inerzia (o densità di massa) del mezzo}}$

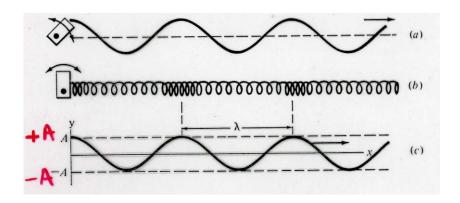
Esempi di impulsi

- (a) impulso (corda sotto tensione) - trasversale
- (b) impulso (molla o slinky) - longitudinale
- (c) rappresentazione grafica di (a) e (b)
- corda: y misura lo spostamento dalla posizione di equilibrio
- molla: y misura la compress./allungamento

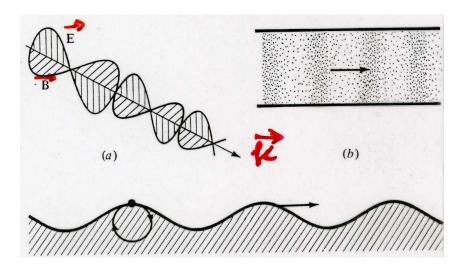


Esempi di onde periodiche

- (a) onda periodica (corda)
- (b) onda periodica (molla)
- (c) rappresentazione grafica di (a) e (b)



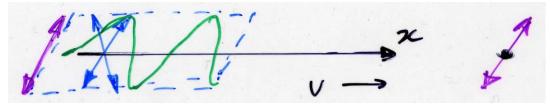
- (a) onda e.m.
- (b) onda sonora (pressione)
- onde d'acqua



Onde trasversali e longitudinali

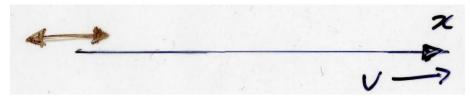
onda trasversale: perturbazione

 ^L direzione di propagazione (onde e.m., onde su una corda vibrante, onde dovute all'elasticità di taglio nei solidi)



polarizzabile: ad es. piano definito dalla perturb. e dalla direz. di propagazione fisso, polariz. lineare

 onda longitudinale: perturbazione // direzione di propagazione

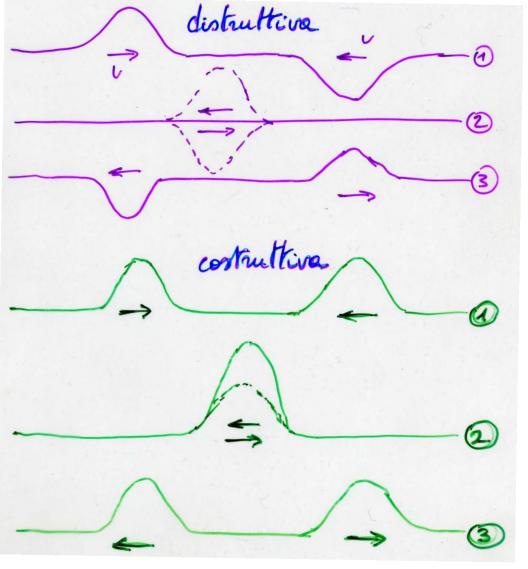


non polarizzabile (non si può individuare alcun piano)

Principio di sovrapposizione (*)

le eq. sono lineari: in ogni punto in cui arrivano 2 (o più) onde / impulsi si devono sommare algebricamente le perturbazioni (sovrapposizione) interferenza costruttiva / distruttiva

costruttiva / distruttiva (dove si ha somma / differenza di ampiezze uguali)



Onde che si propagano in verso opposto – onde stazionarie

 ad es. in una corda tesa vibrante di lunghezza L: la riflessione dell'onda ad un estremo si somma con l'onda con l'onda incidente (riflessione con inversione di polarità agli

estremi fissi)

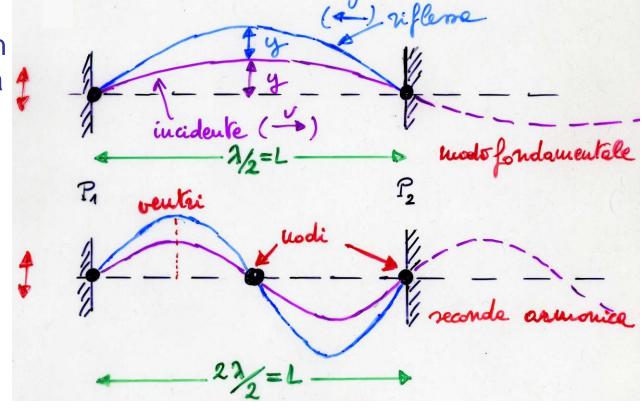
interferenza, in gen. distruttiva

relazione fra
 λ = v/v e L
 per avere
 interferenza
 costruttiva

– risonanza:

$$L = n(\lambda_n/2)$$

n = 1,2,3



TO 1080

Onde stazionarie (2)

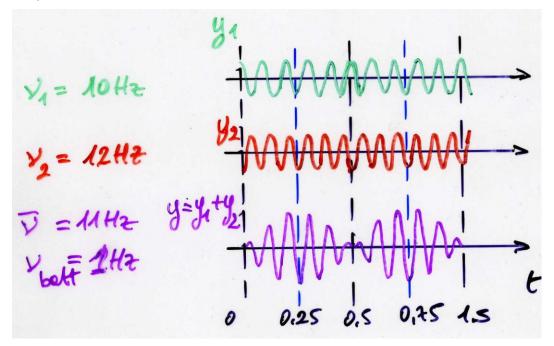
- per ottenere la risonanza tutte le onde devono essere in fase $v_n = v/\lambda_n = nv/(2L) = nv_1$ n = 1,2,3... dove $v_1 = v/(2L) = 1/(2L)\sqrt{(F/\mu)}$ è la frequenza fondamentale
- i nodi sono i punti dove l'ampiezza dell'onda è sempre = 0,
 i ventri quelli dove l'ampiezza è massima
- non c'è propagazione di energia fuori della corda, l'onda non viaggia (onda stazionaria)
- (*) si può mostrare che la dipendenza da x e t si separa $y = 2 A sin(2\pi x/\lambda) cos(2\pi vt)$ la condizione dei nodi $sin(2\pi x/\lambda) = 0$ dà $2L/\lambda_n = n$ con n intero
- (*) se invece un estremo è fisso (nodo) e l'altro mobile (ventre)
 ad es. canna d'organo

$$n\lambda_n/4 = L$$
 con $n = 1,3,5$ dispari $v_1 = v/(4L)$

(*) paragrafi facoltativi

Battimenti (*)

 due (o più) onde di frequenza vicina e di uguale ampiezza, ad es.

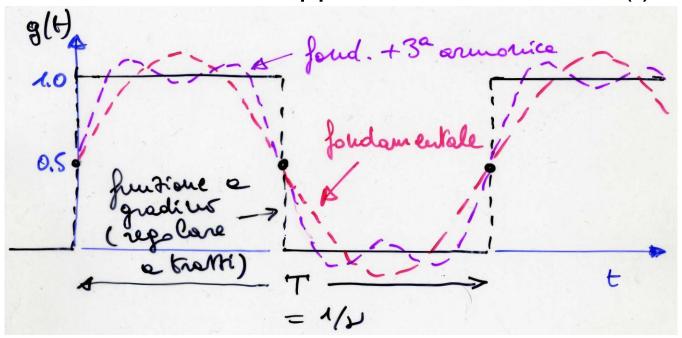


interferenza \rightarrow frequenza media $\bar{v} = (v_1 + v_2)/2$ per un termine modulante $v_{\text{batt}} = (v_2 - v_1)/2$

usati per accordare strumenti musicali

Moto periodico generico: teorema di Fourier (*)

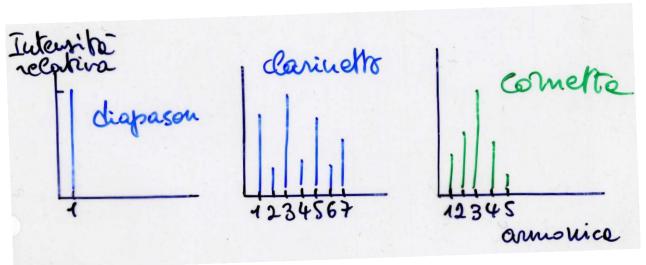
 il moto armonico semplice è il più semplice moto periodico → un generico moto periodico, ad es. g(t), è esprimibile con una sovrapposizione di m.a.s., f(t)



$$f(t) = \frac{1}{2} + \frac{2}{\pi} \left[\sin(2\pi \frac{t}{T}) + \frac{1}{3} \sin(3 \cdot 2\pi \frac{t}{T}) + \dots + \frac{1}{2n+1} \sin((2n+1) \cdot 2\pi \frac{t}{T}) + \dots \right]$$
(*) in alternativa a pagg. 54-61 FLN mag 11

Teorema di Fourier (2) (*)

- \(\nabla \) moto periodico di dato T (v) è rappresentabile come somma di tanti (in generale ∞) m.a.s. di frequenza v (fondament.), 2v, 3v ... (armoniche super.), in generale sfasati fra loro teorema di Fourier
- strumenti diversi hanno, per una stessa nota, la stessa fondamentale ma diverse armoniche (diverso spettro)



FLN mag 11 (*) in alternativa a pagg. 54761

Onde sonore

- onde di pressione in gas, liquidi, solidi
- aria (20°C) $v = \sqrt{(\gamma RT/M)} = 343 \text{ m/s}$
- H_2O v = 1450 m/s
- $I = p^2_{max}/(2\rho v)$

dove (pv) è l'impedenza acustica e p_{max} è in effetti un Δp , sovrapposto a $p_0 = 101.3 \text{ kPa}$

$$p_{\text{max}} = 3 \cdot 10^{-5} \text{ Pa}$$
 $I_0 = 10^{-12} \text{ W/m}^2$ soglia di udibilità

- " " 30 Pa I " 1 W/m² soglia del dolore
- ν e λ, l'orecchio umano è sensibile nell'intervallo

$$v = (30, 20000) Hz$$

$$v = (30, 20000) \text{ Hz}$$
 [< 30 Hz infra-s., > 20 kHz ultra-s.]

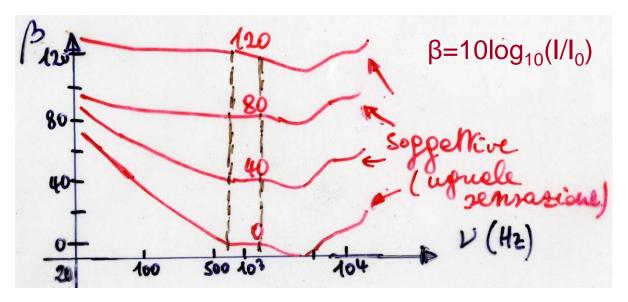
$$\rightarrow \lambda = (10, 0.02)$$
 m in aria

(l'orecchio del Myotis lucifugus v_{max} ~200 kHz u.s. λ ~2 mm)

sovrappressione

Onde sonore (2)

- u.s. in H₂O es. 5 MHz → λ ~ 0.3 mm
 si usano cristalli piezoelettrici: ecografia, produzione di emulsioni, lavaggi, effetti biologici su batteri
- sensibilità dell'orecchio: 12 ordini di grandezza in intensità ~ logaritmica (legge di Fechner) → scala logaritmica



Onde sonore (3)

si definisce livello d'intensità

$$\beta = 10\log_{10}(I/I_0)$$

che si misura in decibel (dB), dove I è l'intensità che corrisponde a β e $I_0 = 10^{-12}$ W/m² la soglia di udibilità (con riferimento all'orecchio umano)

- soglia di udibilità: $\beta = 10\log_{10}(I_0/I_0) = 0$ dB " del dolore: $\beta = 10\log_{10}(10^{12}) = 120$ dB traffico stradale ~ 70-80 dB (inquinamento acustico)
- siccome I \propto A² si ha una definizione analoga di β β = 20log₁₀(A/A₀) con A ampiezza corrispondente a β etc.

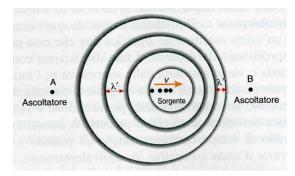
Effetto Doppler(*)

- consideriamo una sorgente S di onde sonore di frequenza v ed un osservatore O ad una certa distanza; se i due sono relativamente fermi, O sentirà un suono avente la stessa v
- supponiamo che S si muova verso O con vel. v_s ed emetta una cresta per t=0: la successiva sarà emessa dopo T=1/v, intanto la 1ª ha viaggiato λ=vT=v/v mentre S ha viaggiato v_s/v → separazione fra due creste success.

$$\lambda' = V/V - V_S/V = (V - V_S)/V$$

e O sente una frequenza

$$v' = v v/(v-v_s)$$



 $(v' = v/\lambda')$, se si muove S, la vel. delle onde non cambia)

(*) facoltativo

Effetto Doppler (2) (*)

- se S si allontana da O, si avranno creste più spaziate
 λ' = (v+v_s)/v e v' = v v/(v+v_s)
- supponiamo ora S ferma e O che si avvicina con vel. v_o, la vel. delle onde relativa ad O è v+v_o, quindi O incontra le creste con frequenza

$$v' = (v+v_0)/\lambda = v (v+v_0)/v$$

 $(\lambda = v/v)$, il moto di O non ha effetto sulla λ del suono, O intercetta solo più creste di quando è fermo relativamente ad S)

 S ferma e O si allontana, la vel. delle onde relativa ad O è v–v_o e avremo

$$v' = (v-v_0)/\lambda = v (v-v_0)/v$$

Effetto Doppler (3) (*)

- riassumendo: quando S e O si avvicinano, la frequenza del suono percepita da O aumenta; quando si allontanano, diminuisce – lo spostamento di frequenza può servire a misurare la velocità relativa
- riassumendo in una sola formula

$$v' = v \frac{v - v_o}{v - v_s}$$

$$v_s < 0$$

$$v_o < 0$$

dove v_s, v_o vanno presi con valore e segno: saranno +vi se sono paralleli a v, –vi se antiparalleli

 le formule valgono per tutte le onde meccaniche (nei gas, liquidi, solidi); per la luce valgono in 1^a approx, se le vel. sono << c, inoltre conta solo la vel. relativa

Applicazioni dell'effetto Doppler (*)

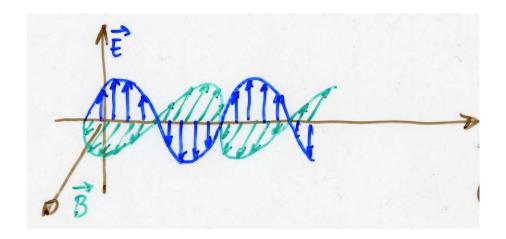
- radar (<u>radio detecting and ranging</u>) per misura di v_s
- ecoDoppler con US; lo spostamento di frequenza è $\Delta v = 2(v_s/v) v \cos\theta$

dove v_s è la vel. della sorgente (sangue, globuli rossi), v=1540 m/s quella del suono nei tessuti molli, θ è l'angolo fra trasduttore e

vaso sanguigno

 si lavora con impulsi brevi (come i delfini, pipistrelli etc.) ed i segnali riflessi (eco) sono processati matematicamente – rosso e blu indicano v_s +va e –va, rispett.

FLN mag 11



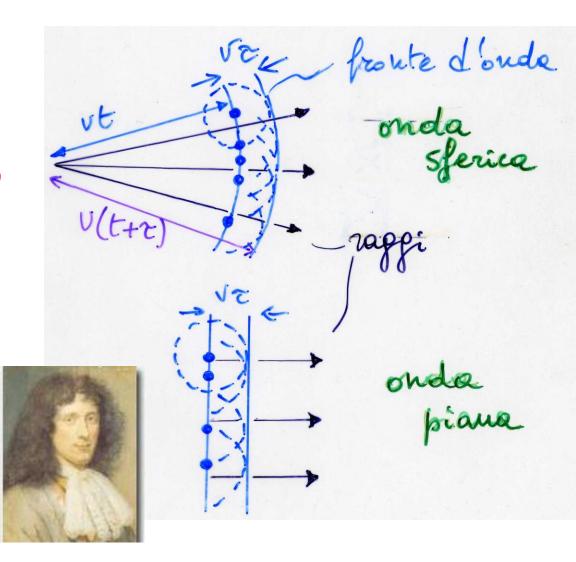
Ottica fisica

FLN mag 11

86

Principio di Huygens

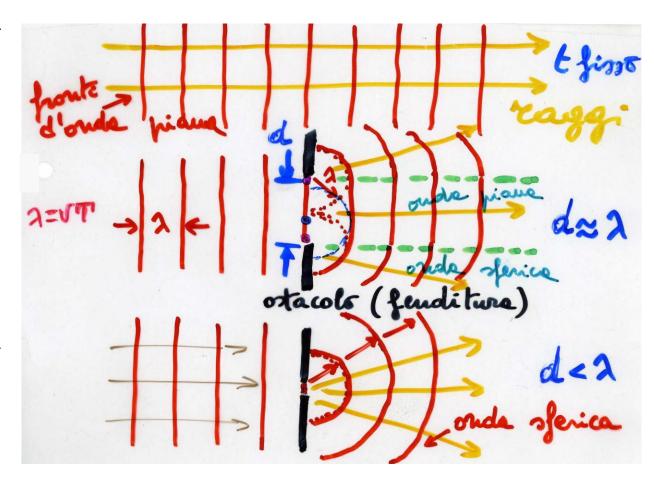
- propagazione di onde in mezzi omogenei e isotropi: l'inviluppo delle onde sferiche elementari emesse dai punti di un fronte d'onda dà il nuovo fronte d'onda
- [ampiezza onde elem. max in avanti è = 0 per θ >= π/2 (non ci sono onde regressive)]
- può essere esteso a mezzi anisotropi (birifrangenza) e alla propagazione in mezzi diversi (riflessione e rifrazione)



FLN mag 11

Applicazione del principio di Huygens

- il principio di Huygens spiega naturalmente la diffrazione delle onde
- ad es. un fronte d'onda piano è trasmesso solo parzialm. da una fenditura, ai bordi si sviluppa un'onda sferica la cui ampiezza decresce come 1/(distanza dalla fenditura)



Diffrazione delle onde

- non si possono selezionare i raggi! quando un'onda incontra un ostacolo/fenditura di larghezza d
 - d >> λ, si seleziona una larga parte del fronte d'onda, effetti di diffrazione solo ai bordi
 - d >~ λ , diffrazione e trasmissione

 \rightarrow risoluzione $\approx \lambda$

- d < λ, dopo l'ostacolo l'onda è interamente diffratta (~ onda sferica o cilindrica)
- onde sonore λ fra (0.02, 10) m
 diffrazione importante
- onde luminose λ_{vis} fra (0.4, 0.7)-10⁻⁶ m ottica geometrica
- risoluzione di punti vicini/ potere di localizzazione degli strumenti ottici (ad es. microscopio)
 - $\lambda_{blu} = 4.5 \ 10^{-7} \text{m} \sim 10^4 \text{r}_0$, raggio di Bohr (H)

non si possono "vedere" gli atomi in senso stretto

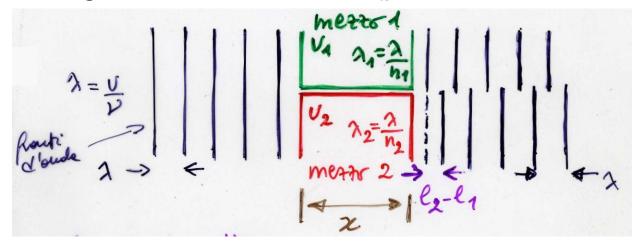
Cammino ottico

in un'onda piana varia solo la fase

t fisso:
$$y = A\sin(2\pi x/\lambda)$$
 $A = cost$

$$A = cost$$

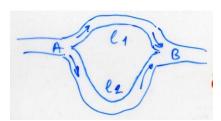
onda che segue cammini diversi (passa in mezzi diversi)



- cammino ottico: $l_{1,2} = n_{1,2}x$ $(x/\lambda_{1,2} = n_{1,2}x/\lambda)$
- differenza di fase: $\delta = (2\pi/\lambda)(1_2-1_1)$

sfasamento: effetto del mezzo sull'onda

oppure si può variare il cammino geometrico



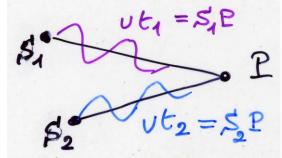
Interferenza di onde armoniche (*)

• x fisso (P), onde monocrom., stessa A

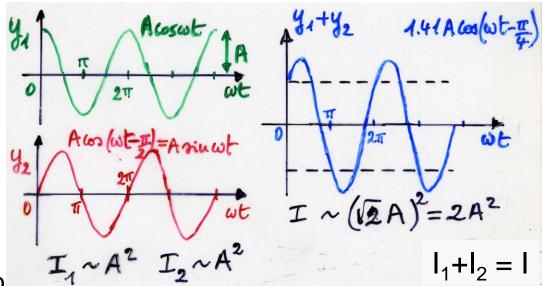
$$y_1 = A\cos\omega t$$

 $y_2 = A\cos(\omega t + \delta)$

differenza di fase
$$\delta = 2\pi v(t_2-t_1)/\lambda$$



- si ha sempre interferenza (ma con la luce normale, emissioni atomiche scorrelate e brevi, non si evidenzia)
- c'è interferenza sia con onde lungitudinali che trasversali
- ad es.



(*) facoltativo

FLN mag 11

Interferenza (2) (*)

• se
$$\delta = 2m\pi$$
 m = 0,1,2 ... $[\Delta x = m\lambda]$

si ha interferenza costruttiva: le ampiezze si sommano

$$I \propto (A+A)^2 = (2A)^2 = 4A^2$$

• se
$$\delta = (2m+1)\pi$$
 m = 0,1,2 ... $[\Delta x = (2m+1)\lambda/2]$

si ha interferenza distruttiva, le ampiezze si sottraggono

$$I \propto (A-A)^2 = 0$$

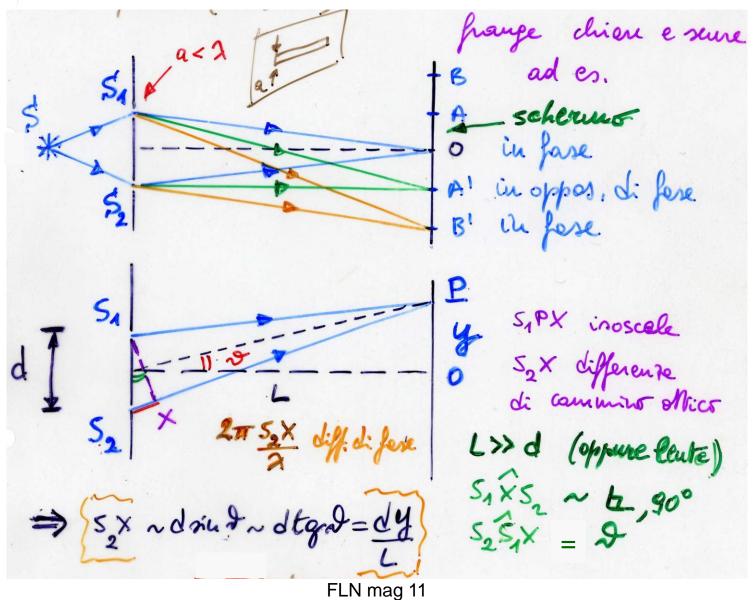
NB per evidenziare l'interferenza δ deve essere fisso (→ sorgenti coerenti, relazione di fase fissa, il che non è vero per la luce normale)

(*) facoltativo

Interferenza della luce – esperienza di Young

- da una sorgente monocromatica (ad es. linea D del Na, λ = 589 nm) se ne ottengono due coerenti, relazione di fase fissa, con artifici: due fenditure (Young) [o due specchi (Fresnel)]
- la luce prodotta dalle fenditure S₁ e S₂ è raccolta su uno schermo lontano (oppure si inserisce una lente) dove si osservano le frange d'interferenza
- in O, equidistante da S₁ e S₂, le due onde arrivano sempre in fase → interferenza costruttiva, max d'intensità, frangia chiara
- muovendosi sullo schermo, la diff. di cammino aumenta fino all'opposizione di fase, 0 di intensità, frangia scura; poi le onde ritornano in fase, frangia chiara etc.

Interferenza della luce (2)



Interferenza della luce (3)

• in P generico, le onde difratte da S_1 e S_2 sono in fase se la diff. di cammino ottico è un numero intero di λ (in opposizione se numero dispari di $\lambda/2$)

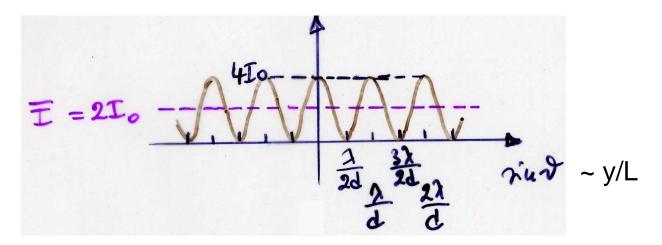
```
in fase dy/L = m\lambda m=0,1,2,... in opposiz. dy/L = (2m+1)\lambda/2 " diff. di fase 2\pi dy/(\lambda L)
```

 distanza fra massimi / righe gialle (o minimi / righe scure) sullo schermo

$$y_m - y_{m-1} = L\lambda/d$$
 \rightarrow $\lambda = (d/L)\Delta y$ con $\lambda \sim 0.6 \ \mu m, \ d = 1 \ mm,$ $L = 2 \ m$ \rightarrow $\Delta y = 1.2 \ mm$

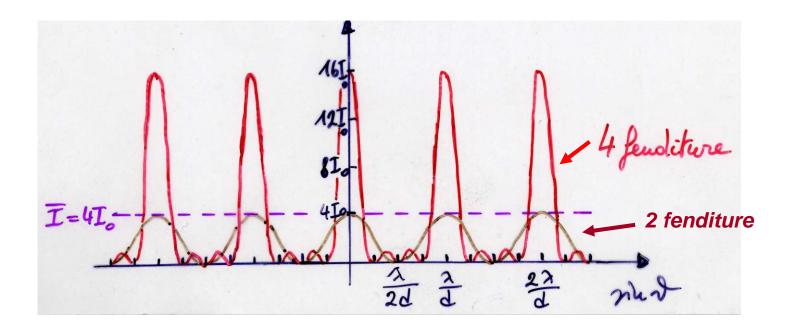
Interferenza della luce (4)

- l'interferenza della luce prova che la luce è un fenomeno ondulatorio (ma non se è trasversale o longitudinale, per distinguere bisogna studiare la polarizzazione)
- se non si usa una sorgente monocromatica → max e min sovrapposti (a parte il primo) e non si osservano le frange
- intensità sullo schermo con 2 fenditure



Interferenza della luce (5) (*)

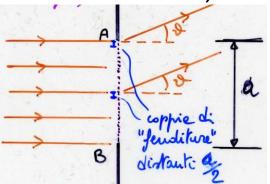
 se si ripete l'esperimento con un numero maggiore di fenditure si ottengono massimi più separati (e si sviluppano max secondari → è più facile misurare λ); ad es. con 4 fenditure l'intensità è

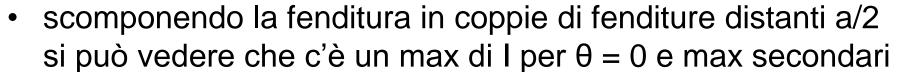


Diffrazione da una fenditura

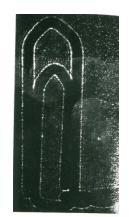
diffrazione à la Fraunhofer (schermo a grande distanza o

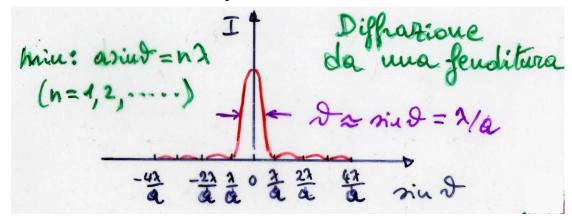
nel piano focale di una lente)





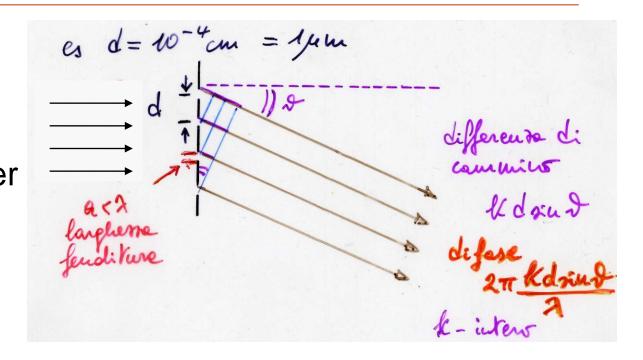
molto deboli





Reticolo di diffrazione

- realizzato con incisioni // su vetro o plastica
- se c'è un max per una coppia di fenditure, tutte le altre sono in fase



$$\sin\theta = k\lambda/d$$

$$k = 0,1,2,3...$$

ora θ è grande, es. λ = 0.589 µm, θ_1 = 36.1° \rightarrow misura di λ più precisa

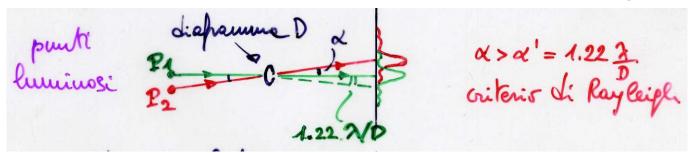
 se sinθ ≠ kλ/d si ha interferenza distruttiva → max ben separati

Limitazioni dei microscopi

- l'ingrandimento del microscopio ottico è dato approx da M = -(16 cm/f_{ob})(25 cm/f_{oc})
- limitazioni
 - aberrazioni geometriche → diaframmi, sistemi di lenti (perdita di luce)
 - aberrazioni cromatiche → lenti composte (perdita di luce, ogni rifrazione aria-vetro implica 4% di luce persa in riflessione, oltre ad artefatti, 4 lenti, 8 riflessioni, 32% di luce persa etc.)
 - $f_{ob,min} \sim 4$ mm, $f_{oc,min} \sim 10$ mm $\rightarrow M \sim -1000$
 - limite intrinseco: dato dalla natura ondulatoria della luce, due punti luminosi appariranno in effetti come figure di diffrazione di larghezza ∞ λ

Limitazioni dei microscopi (2)

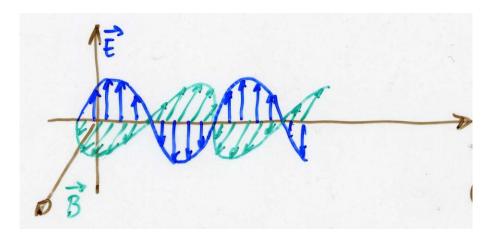
 diffrazione da un'apertura / ostacolo di diametro D, larghezza della macchia ~ 1.22λ/D – due punti saranno separabili solo se le macchie non si sovrappongono



- si può mostrare (principio di Abbe) che d_{min} = 0.61λ/(nsinθ) dove n è l'ind. di rifraz. del mezzo intorno all'obiett. e θ l'angolo sotto cui è visto l'obiettivo → ingrand. utile
 M_{utile} ~ d/d_{min} ~ 0.1 mm/0.2 μm ~ 500
- \rightarrow obiettivi a immersione (olio n = 1.55, λ ' = λ /n); UV, però lenti di SiO₂ e fotografia \rightarrow microscopio elettronico, $\lambda \propto 1/(mv)$ (vedi microfisica)

Polarizzazione della luce

 le onde e.m. sono trasversali: si dimostra osservando la polarizzazione della luce, ad es. se E oscilla // direzione fissa si ha polarizzazione lineare



 polarizzazione: si ottiene con polaroids (catene allungate conduttrici in una direzione, assorbono una componente di E), riflessione, dicroismo, birifrangenza

Polarizzazione (2)

ad es. polarizz. per riflessione

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
; $\theta_r = \theta_1$
 $\sin \theta_2 = 0^\circ$, $\theta_2 = 90^\circ - \theta_r$
 $\sin \theta_2 = \cos \theta_1$

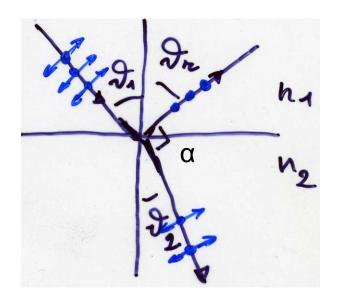
d'altra parte se le onde e.m. sono trasversali, l'onda riflessa,

dovuta all'oscillazione nel mezzo 2, non può avere una componente nella direzione di propagazione →

risulta polarizzata \perp al piano del disegno per un angolo $\theta_1 = \theta_p$

 $tg\theta_p = sin\theta_p/cos\theta_p = sin\theta_1/sin\theta_2 = n_2/n_1$

legge di Brewster



Polarizzazione (3)

- se un fascio di luce traversa un (o più) polaroid, solo una componente di E può passare, l'altra sarà assorbita
 → riduzione di ampiezza e di intensità
- legge di Malus, luce polarizzata linearmente in ingresso di ampiezza Ε₀, intensità I₀

$$\mathsf{E}_1 = \mathsf{E}_0 \mathsf{cos} \theta_1 \qquad \qquad \mathsf{I}_1 = \mathsf{I}_0 \mathsf{cos}^2 \theta_1$$

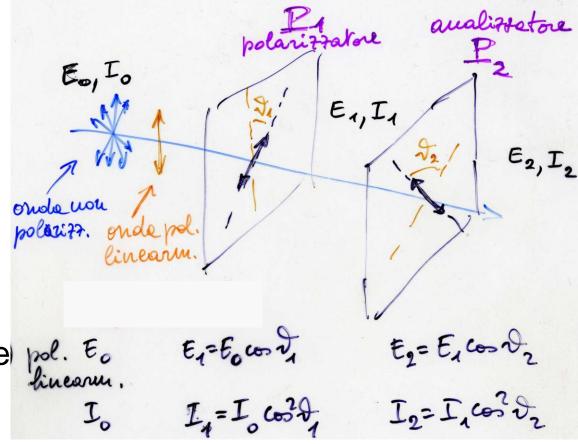
dove θ_1 è l'angolo fra **E** e l'asse di trasmissione del polaroid, secondo cui la luce è polarizzata in uscita;

se la luce non è polarizzata, $\theta_1 = 45^\circ$, valor medio sul 1° quadrante,

$$E_1 = E_0/\sqrt{2}$$
 $I_1 = I_0/2$

Polarizzazione (4)

- con due polaroid in serie, il 2º vede la luce passata dal 1º e basterà applicare due volte la legge di Malus
- con questo sistema
 è possibile studiare
 ad es. una soluzione
 otticamente attiva
 posta fra P₁ e P₂ e
 misurarne la
 concentrazione ∞
 angolo di cui ruota E



non
$$E_0$$
 $E_1 = E_0/\sqrt{2}$ $E_2 = E_0 \cos\theta_2/\sqrt{2}$ pol. I_0 $I_1 = I_0/2$ $I_2 = I_0 \cos^2\theta_2/2$

Two cowboys marvelling at the Doppler effect in a train whistle

Fine di oscillazioni e onde

FLN mag 11 106