

Microfisica

Corso di Fisica per CTF AA 2009/10

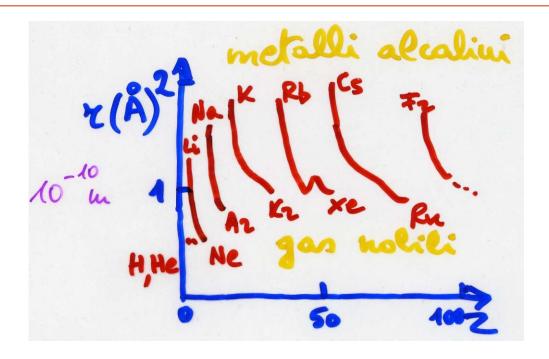
FLN mag 11

I limiti della fisica classica

- "normalmente" / macroscopicamente:
 - c = 2.998-10⁸ m/s velocità (<u>c</u>elerity) della luce nel vuoto risulta molto grande rispetto alle velocità ordinarie – altrimenti → <u>relatività</u> (<u>ristretta</u> e generale)
 - h = 6.626-10⁻³⁴ Js costante di Planck risulta molto piccola rispetto alle quantità ordinarie con essa omogenee – altrimenti → meccanica quantica
- quando le dimensioni cominciano a diventare comparabili con quelle atomiche, queste due condizioni possono non essere più soddisfatte – qui ci occuperemo ~sempre del 2º caso, nel senso che considereremo v << c

Fenomeni non spiegabili dalla meccanica ed e.m. classici (fine '800, inizi '900)

- relatività dei sistemi di riferimento inerziali per v_{relativa} grande; v_{segnale} ≤ c → meccanica relativistica
- comportamento a piccole distanze (dimensioni atomiche)
 - stabilità degli atomi
 - uguaglianza delle configurazioni per atomi della stessa specie
 - emissione ed assorbimento della radiazione e.m. (in particolare, spettri di righe)
 - spettro del corpo nero
 - calori specifici di gas e solidi
 - effetto fotoelettrico ed effetto Compton
 - radioattività
 - → meccanica quantistica


Dimensioni atomiche (*)

- vari metodi per stimarle, ad es.
 - olio (C₅₇H₁₀₄O₈) su acqua → strato monomolecolare per via della tensione superficiale – pur senza arrivarci si può comunque ottenere: dimensioni molecolari < 10 Å
 - teoria cinetica dei gas
 - diffusione
 - covolume b, eq. di Van der Waals (p+a/V²)(V-b) = nRT
 dimensioni atomiche ≈ 1 Å
 - solido cristallino o microcristallino: pensiamo gli atomi come sferette o cubetti attaccati

```
N_A V_{atom.} = M/\rho = MV/m V_{atom.} = 4\pi r^3/3 con M mole; r \approx 1.6 Å (Ag), 1.4 Å (Fe) dipende poco dalla massa atomica per elementi diversi
```


Dimensioni atomiche

 tutti gli elementi esistono in forme di massa diversa, separabili ad es. con uno spettrometro di massa, gli isotopi (con uguali proprietà chimiche e uguale r, che non dipende dalla massa atomica per uno stesso elemento)

Stabilità e uguaglianza degli atomi, spettri di righe

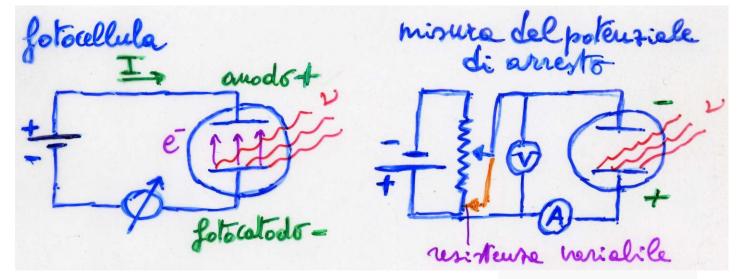
- classicamente: una carica accelerata emette onde e.m. perdendo energia: se si considera un e⁻ che gira intorno ad un p, esso è soggetto ad a_c = v²/r e si può stimare che dovrebbe 'cadere' sul p entro 10⁻¹⁰ s invece gli atomi sono stabili
- classicamente: e⁻ e p sono tenuti insieme dalla forza di Coulomb, r ed energia del sistema sono arbitrari – invece alla stessa T gli atomi mostrano r ed energie simili
- se si fa passare la luce per es. attraverso un gas si osservano righe discrete di assorbimento, in corrispondenza di certe lunghezze d'onda, sempre le stesse per un stesso gas

Spettro del corpo nero e quanti di energia

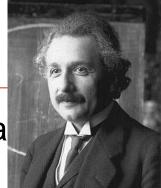
- ∀ corpo emette onde e.m. (alla sua temp. T) classic.: ciò origina dalle vibrazioni di cariche dovute all'agitazione termica; non si riesce però a spiegare lo spettro e la potenza irraggiata (leggi di Wien e di Stefan-Boltzmann, v. Termodinamica)
- Planck (1900) avanza un'hp ad hoc per spiegare lo spettro del corpo nero: gli oscillatori emettono o assorbono solo quantità discrete di energia

E = hv

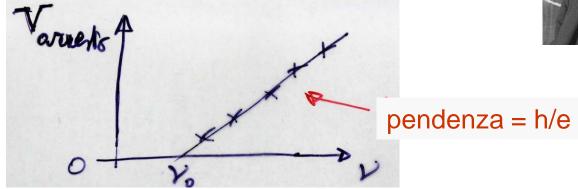
quanti di energia o fotoni, con h = 6.626-10⁻³⁴ Js, costante di Planck (ricavabile ad es. dalla forma dello spettro)


• ⇒ la luce sembra comportarsi come una particella (quando interagisce con la materia)

Effetto fotoelettrico (H.R. Hertz)


fatti sperimentali:

- 1. in alcuni materiali, ad es. metalli, la luce visibile può strappare e⁻; \exists una ν di soglia, $\nu > \nu_0$ (\forall Intensità)
- controcampo: blocca il passaggio degli e⁻ nel circuito esterno (potenziale d'arresto ≈ 1 V) → K_{max}≈ 1 eV (∀ Intensità)
- 3. l'emissione è immediata
- 4. per $v > v_0$ fissa, N_e emessi ∞ Intensità della luce



Effetto fotoelettrico (2)

misurando il pot. d'arresto con luce di varia v si ha

- \Rightarrow $E_e \in (0, K_{max} = \frac{1}{2} m v_{max}^2) con$ $\frac{1}{2} m v_{max}^2 = e V_a = cost(v - v_0) = h(v - v_0)$
- introducendo i fotoni (E = hv, Einstein, 1905, **PN** 1921) si spiegano i fatti sperimentali: un e⁻ interagisce con un fotone, nessun ritardo, hv è la max energia che l'e⁻ può avere, dedotto il lavoro di estrazione => altra evidenza che la luce si comporta come una particella (quando

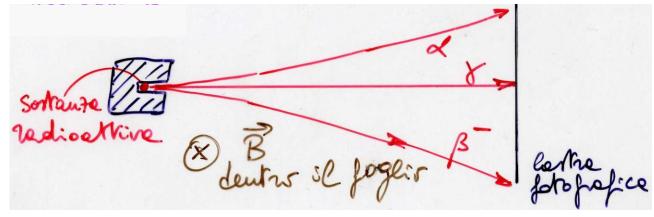
Effetto fotoelettrico (3)

in formule

$$1/2 \text{mv}_{\text{max}}^2 = \text{hv} - \Phi$$

con $\Phi = \text{hv}_0 = \text{hc}/\lambda_0$ lavoro di estrazione

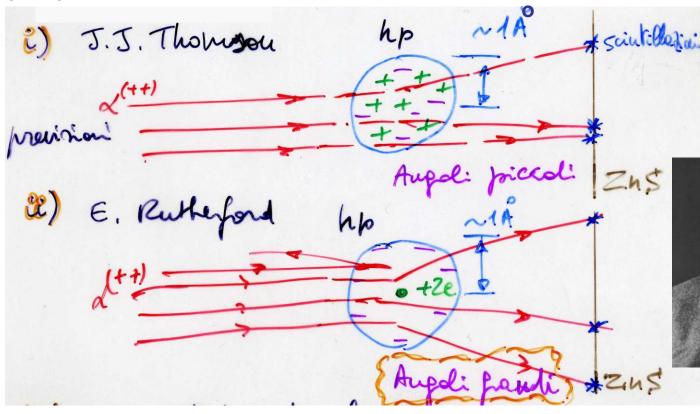
- classicamente: non si può capire la soglia (hp. processo multiplo), si prevede quindi un ritardo, v è irrilevante mentre l'en. degli e- è legata ad l_{luce}
- es. voglio un fotoelettrone da 1 eV dal Cs (Φ_{Cs} = 1.8 eV), qual'è λ_{max} (ν_{min})?


$$E_{min} = \Phi + (mv^2/2) = (1.8 + 1) \text{ eV} = 4.49 \cdot 10^{-19} \text{ J}$$

 $\lambda_{max} = hc/E_{min} = 1.99 \cdot 10^{-25} \text{ Jm}/4.49 \cdot 10^{-19} \text{ J} = 443 \text{ nm} \text{ (violetto)}$

applicazioni: dalle cellule fotoelettriche (apriporta) ai fotomoltiplicatori

Radioattività


- alcune sostanze naturali (ad es. U, Th ...)
 emettono radiazioni α (≡ He++), oltre a β- (≡ e-)
 e γ (neutre) alcune sostanze prodotte artificialmente con acceleratori emettono radiazioni β+ (≡ e+)
- la scoperta della r. fu fortuita (Becquerel, 1896, PN 1903)
- le α sono assorbite rapidamente nella materia, mentre i β penetrano più profondamente (i γ ancora di più)
- α, β e γ sono separabili con un campo magnetico

Modelli atomici

 dopo la scoperta dell'e⁻ (J.J. Thomson) sono stati proposti vari modelli atomici fra cui

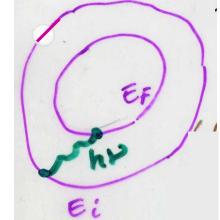
PN Chim. 1908

PN

1906

 sperimentalmente ha ragione Rutherford (1911, centenario) ⇒ modello planetario

L'atomo di Rutherford-Bohr


- ogni atomo, neutro, ha da 1 a 92 (114) e⁻ (Z)
- raggio atomico $\sim 10^{-10}$ m = 1 Å
- raggio nucleo ~10⁻¹⁵ m = 1 fm; carica +Ze, massa ≈ Am_p
- atomo di H o ∀ (Z-1) ionizzato, m_e/m_p = 1/1836.15 << 1
 <p>→ si può assumere m_p = ∞, p fermo ed e⁻ che ruota
 intorno (errore piccolo); forza: elettrica fra p ed e⁻,
 attrattiva; modello planetario classico, orbite circolari
 (per semplicità)
- $mv^2/r = 1/(4\pi\epsilon_0)Ze^2/r^2$
- $E_0 = \frac{1}{2} \text{mv}^2 \frac{1}{4\pi\epsilon_0} \text{Ze}^2/\text{r}$ energia di legame = $-E_0$

I postulati di Bohr

- Bohr (1913, PN 1922), modello semiclassico:
 - ∃ stati energetici ben precisi (stazionari) dell'e⁻ con energia E_n: emissione o assorbimento di radiazione / luce corrispondono a transizioni fra uno stato e l'altro, fra un livello energetico ed un altro
 - frequenza della radiazione emessa o assorbita

$$v = |E_i - E_f|/h$$

(h è la cost. di Planck): corrisponde
all'interazione con un fotone, $E = hv$

3. quantizzazione del momento angolare $(\vec{\ell} = \vec{r} \wedge \vec{q} = \vec{r} \wedge m\vec{v})$ $mvr = nh/2\pi$ (orbite circolari) n = 1,2,3... intero

Modello di Bohr

- il 3º postulato corrisponde a considerare gli e⁻ come onde con λ = h/q (De Broglie, 1924): le onde elettroniche interferiranno distruttivamente a meno
 - di non avere onde stazionarie

$$2\pi r = n\lambda = nh/(mv)$$

dai 3 postulati segue:

$$- r_n = n^2 a_0 / Z$$

$$- E_n = -E_1 \frac{Z^2}{n^2}$$

$$- v = |E_i - E_f|/h = cR_{\infty} Z^2 |1/n_f^2 - 1/n_i^2|$$

con
$$a_0 = 0.0529 \text{ nm}$$
 raggio di Bohr

 $E_1 = 13.6 \text{ eV}$ energia di legame dello stato più basso (stato fondamentale)

$$R_{\infty} = 1.097 \cdot 10^7 \text{ m}^{-1}$$
 costante di Rydberg

La matematica del modello di Bohr (*)

partendo da F = ma

$$1/(4\pi\epsilon_0)Ze^2/r^2 = mv^2/r$$
 (moltiplico per mr³)

$$1/(4\pi\epsilon_0)Ze^2r = (mvr)^2 = (nh/2\pi)^2$$
 (usando 3º Bohr)

$$\rightarrow r_n = n^2 h^2\epsilon_0/(\pi mZe^2) \ [= n^2a_0/Z]$$

semplificando r in F = ma

$$1/(4\pi\epsilon_0)Ze^2/r = mv^2$$

da cui ho per l'energia totale

$$E_0 = \frac{1}{2} \text{mv}^2 - \frac{1}{4\pi\epsilon_0} \text{Ze}^2/\text{r} = \frac{1}{8\pi\epsilon_0} \text{Ze}^2/\text{r} - \frac{1}{4\pi\epsilon_0} \text{Ze}^2/\text{r}$$

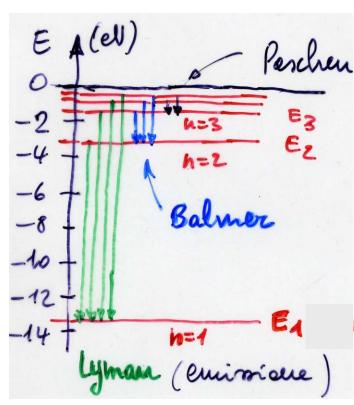
= $-\frac{1}{8\pi\epsilon_0} \text{Ze}^2/\text{r}$

$$\rightarrow E_n = -1/n^2 \text{ mZ}^2 \text{e}^4/(8\text{h}^2\epsilon_0^2) = [-E_1 Z^2/n^2]$$

NB E₀ è negativa, cioè devo fornire en. per separare e⁻ e p

Modello di Bohr (2)

- si giustifica (per hp.) la stabilità degli atomi
 non possono avere energia inferiore a quella dello stato fondamentale
- si trovano le energie di legame corrette (verificabili anche con gli spettri di righe dei raggi X, v. oltre)
- si spiegano le righe di assorbimento e emissione dovute ai salti quantici fra un livello energetico ed un altro con assorbimento o emissione di un fotone – riproducendo i dati degli spettroscopisti (serie di Balmer etc.)
- il modello può essere esteso per spiegare situazioni più complicate, ma sono presenti inconsistenze e alla fine è stato rimpiazzato dalla meccanica quantistica



Livelli energetici

 i livelli energetici dell'atomo di H o di quelli idrogenoidi sono separati per n piccolo e si addensano per n poichè

 $E_n \propto 1/n^2$

- in generale i livelli energetici di un ∀ e⁻ in un ∀ atomo sono rappresentati con linee orizzontali indipendentemente dal modello
- le linee verticali rappresentano le transizioni radiative (fotone) fra un livello ed un altro
- fra livelli energetici molto vicini sono possibili anche transizioni non radiative ad es. per urto fra atomi vicini

Onde di materia

- l'idea di De Broglie (tesi, 1924, PN, 1927) è che luce e materia abbiano proprietà sia ondulatorie (onde di probabilità di presenza) che corpuscolari
- eq. di De Broglie
 - $\nu \cong E/h$
 - $-\lambda = h/q = h/(mv)$

ν e λ proprietà ondulatorie, E e q corpuscolari

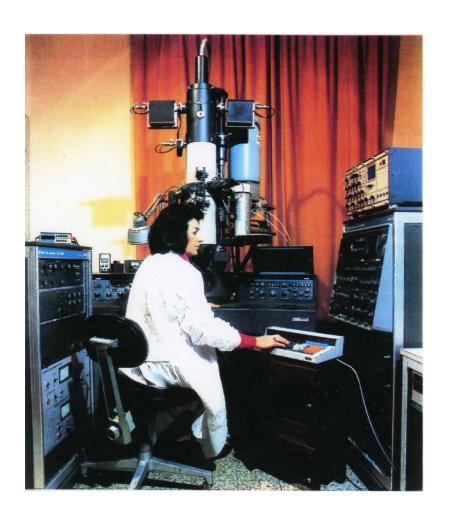
es.1 palla da baseball: m = 150 g, v = 50 m/s, d = 5 cm $\lambda = h/(mv) = 6.63 \ 10^{-34}/(0.15 \cdot 50) = 8.84 \ 10^{-35} \ m$ molto piccola, λ irrilevante: $\lambda/d \sim 2 \ 10^{-33}$

es.2 e⁻ nell'atomo di H: $v = c/137 = 2.19 \cdot 10^6 \text{ m/s}$ $\lambda = h/(mv) = 6.63 \cdot 10^{-34}/(9.11 \cdot 10^{-31} \cdot 2.19 \cdot 10^6) = 0.332 \text{ nm} = 2\pi a_0!$ grande, lunghezza circonf. orbita di Bohr

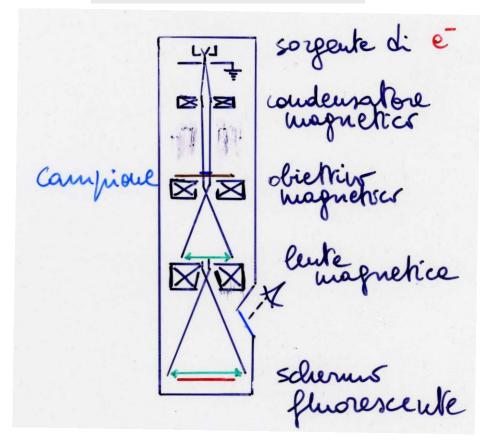
Onde di materia (2)

- conseguenze dell'hp. di De Broglie
 - diffrazione degli e⁻, λ piccola,

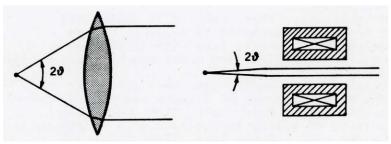
$$K = \frac{1}{2}mv^2 = \frac{q^2}{(2m)} = eV$$
 \rightarrow $q = \sqrt{2meV}$


$$\lambda = h/q = h/\sqrt{2meV} = 1.226 \text{ nm}/\sqrt{K(in eV)}$$

K =100 eV λ = 1.2 Å \rightarrow serve un reticolo con un passo di 1-2 Å (cristallo di Ni, Davisson e Germer, G. P. Thomson)


- tutte le particelle (p,n,α etc.) hanno proprietà ondulatorie → se ne può studiare / usare la diffrazione con reticoli opportuni
- microscopio elettronico

Microscopio elettronico


m.e. a trasmissione

Microscopio elettronico (2)

- a trasmissione (attraverso il campione) oppure a scansione (il fascio di e⁻ è diffuso dal campione)
- con K = 100 keV $\lambda = 0.004$ nm $\sim 10^{-5} \lambda_{\text{visibile}}$
- ci si potrebbe aspettare un guadagno in ingrandimento rispetto al m. ottico ad es. di $\lambda_{vis}/\lambda_{e} \sim 10^{5}$, in effetti si guadagna molto meno, perchè l'apertura numerica [cfr d_{min} = 0.61 λ /(nsin θ)] è molto più piccola

- → ingrand. m.e./ingrand. m.o. ~ 1000
- con particolari microscopi a scansione a effetto tunnel (STM)
 o a forza atomica (AFM) si arriva alle dimensioni atomiche

Dualismo onda-corpuscolo

riassumendo

- tutte le radiazioni, sia materiali [con massa a riposo $m_0 \neq 0$, $m = m_0/\sqrt{1-v^2/c^2}$] che luminose (in generale onde e.m. di $\forall v$, con massa a riposo nulla) hanno una dualità di comportamento
- per la propagazione, trasporto di energia, si comportano come un'onda classica → interferenza, diffrazione
- nell'interazione fra loro, scambio di energia, si comportano come una particella classica

Principio d'indeterminazione

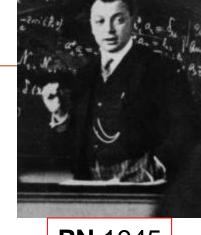
- per localizzare un e⁻ possiamo usare ad es. onde e.m. di lunghezza d'onda λ
- la precisione della misura sarà $\Delta x \sim \lambda \text{ e se } \lambda \rightarrow 0 \text{ anche } \Delta x \rightarrow 0$
- classic.: onda e.m. (trasporta E,q), basta però ridurre l'intensità per non "disturbare" l'e-
- quantistic.: ci vuole almeno 1 fotone con E = hv e $q = h/\lambda$, quindi Δx non può essere ridotto a piacere senza aumentare l'incertezza su q_x

$$\Delta x \Delta q_x \ge h/(2\pi)$$

(Heisenberg 1927, **PN** 1932) conseguenza della definizione operativa di grandezza fisica, misura

Meccanica ondulatoria

- se uso l'hp di De Broglie la lunghezza d'onda dell'e sarà
 - $\lambda(r) = h/q = h/\sqrt{2mK} = h/\sqrt{2m(E_0 W(r))}$
 - \rightarrow funzione d'onda $\psi(r)$
- ψ è l'ampiezza di probabilità di presenza
- |ψ|² è la probabilità (per unità di volume)
- la ψ può essere trovata risolvendo l'eq. di Schrödinger
- non si può più dire che l'e⁻ gira intorno al p nell'atomo di H, vi sarà una prob. di trovarlo vicino / lontano dal p data da |ψ|²: per lo stato fondamentale il massimo di P(r) si ha per r = a₀ = 0.0529 nm (raggio di Bohr)
- come nel modello di Bohr, n = 1,2,3 ... ∞, numero quantico principale (radiale), etichetta i livelli energetici


PN

1933

Numeri quantici

- oltre a dipendere da r, la ψ può dipendere dagli angoli e da variabili interne
- si trova che vi sono 4 numeri quantici che identificano un livello energetico

PN 1945

$$- n = 1,2,3 ... \infty$$

principale (radiale)

$$-\ell = 0,1,2...$$
 n-1

secondario o azimutale (dipend. angolare di ψ) legato al mom. ang. orbitale mvr

$$- m = -\ell, -\ell+1, \dots +\ell$$

 $-m = -\ell, -\ell+1, \dots +\ell$ magnetico (quantizzazione spaziale, rispetto ad una direzione B₇)

$$- m_s = -\frac{1}{2}, +\frac{1}{2}$$

di spin elettronico (momento angolare intrinseco)

•
$$\rightarrow |\Psi_{n,\ell,m,ms}|^2$$

principio di esclusione di Pauli: non possono esserci 2e⁻ con n. quantici uguali in un atomo

Livelli energetici

- atomo di H e atomi idrogenoidi: si ritrovano gli stessi livelli del modello di Bohr tenendo conto delle estensioni a orbite non circolari etc.
- atomi con molti e⁻:
 - attrazione e⁻-nucleo e repulsione e⁻e⁻
 - i liv. en. sono arrangiati in gruppi (strati) con en. simili
 - nello stato fondamentale gli e⁻ occupano i più bassi livelli possibili
 - c'è una dipendenza da ℓ, E minima per ℓ=0
 - non c'è dipendenza da m, a meno di non essere in B
 - c'è una (piccola) dipendenza da m_s (struttura fine delle righe)
- la frequenza delle righe è la stessa del modello di Bohr
- differenza: ad es. stato fondamentale dell'H n=1,ℓ=0,m=0 invece di n=1,ℓ=1 (Bohr)

Notazione spettroscopica(*)

- \$\ell = 0, 1, 2, 3, 4
 s p d f g
 sharp, principal, diffuse, fundamental e poi in ordine alfabetico!
- strati elettronici

$$n = 1, 2, 3, 4, 5$$

K L M NO in ordine alfabetico

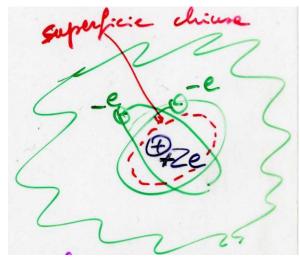
- K_{α} , K_{β} etc. indica le righe prodotte da transizioni $n=2 \rightarrow n=1$ (L \rightarrow K), $n=3 \rightarrow n=1$ (M \rightarrow K) etc. notazione usata per le righe dei raggi X, Z grande
- es. n=1, ℓ =0 elettrone 1s n=3, ℓ =2 elettrone 3d etc.

(*) facoltativo

Transizioni allo strato K(n=1)

• in generale $(n_1 = 1, n_2 = n)$ $hv = E_i - E_f = E_1 Z^2 (1/1^2 - 1/n^2)$ $\lambda = hc/(hv)$

•		$K_{\alpha}(da n=2)$	n grande
H(Z=1)	λ	122	91.1 nm
	hν	10.2	13.6 eV
Cu(Z=29)	λ	0.145	0.109 nm
	hν	8.58	11.4 keV
U(Z=92)	λ	0.0144	0.0108 nm
	hv	86.3	115 keV



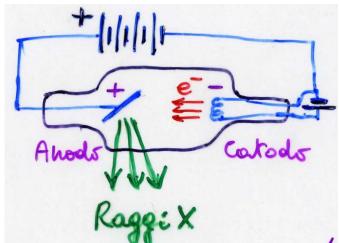
Energia di legame degli elettroni interni

 consideriamo lo strato K, per il principio di Pauli (n=1,ℓ=0) ci sono solo 2e⁻: possiamo ignorare gli e⁻ più esterni (teorema di Gauss), un e⁻ vedrà la carica +Ze del nucleo schermata dall'altro

(sempre per il teorema di Gauss e per simmetria)

 $Z_{eff} \sim Z - 0.5$ (stati 1s) un effetto quasi trascurabile

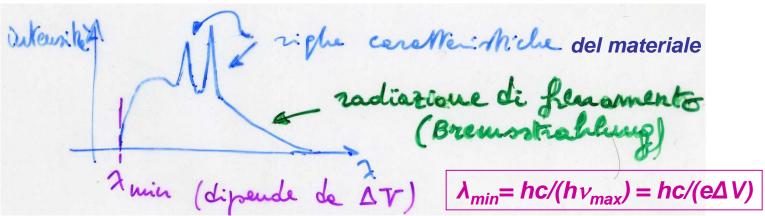
- Cu(Z=29) Zeff = 28.5 E_1 = 11 keV
- U(Z=92) 91.5 114 keV grande

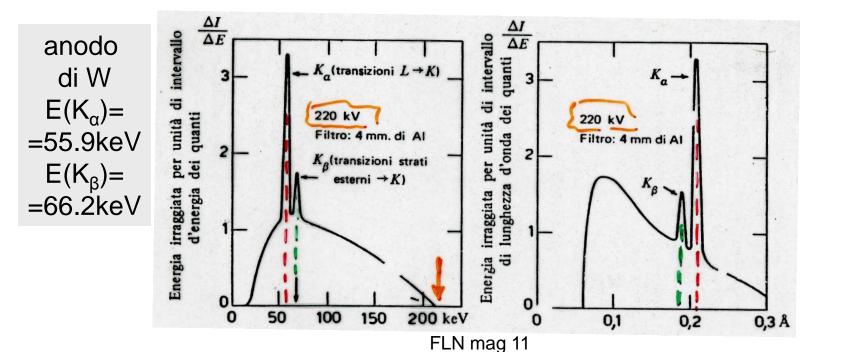

THE STUDIO RULL TO THE STUDIO RU

Raggi X

 scoperta (Röntgen, 1895-6), radiazione uscente dal tubo a raggi catodici; diffrazione da cristalli, von Laue (th.),

Friedrich e Knipping (sper.)


 si tratta di fotoni con grande frequenza (energia) e λ_X
 paragonabile a quella degli e⁻



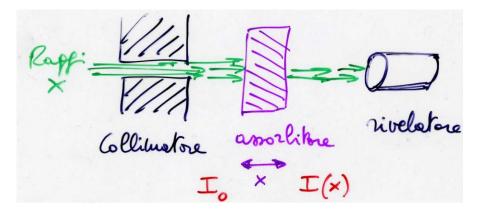
- tipicamente $\Delta V = 50(200)$ kV fino a 4 MV, i = 20 mA
- globalmente E_X ~ 1% (99% va a riscaldare l'anodo)
- lo spettro mostra un continuo (bremsstrahlung o radiazione di frenamento) ed alcune righe (K_α e K_β)
- $\lambda_X = \lambda_X(\Delta V, \text{ materiale anodo})$

Raggi X (2)

Raggi X (3)

problemi

 non si possono usare lenti (n~1 per tutti i materiali), è possibile usare specchi fino a una certa energia e cristalli piegati; ci sono rischi da radiazioni ionizzanti

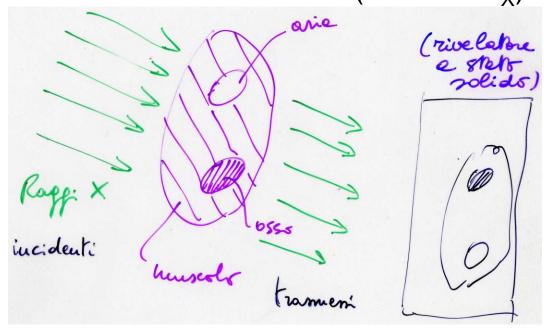

applicazioni

- utilizzando la K_{α} di diversi elementi, Moseley 1913, stabilì una relazione lineare fra $\sqrt{(1/\lambda)}$ e Z che permise di individuare gli elementi mancanti della tavola periodica [Tc(Z=43), Pm(Z=61), Hf(Z=72), Re(Z=75)]
- radiografie e immagini per diagnostica ed altro, mezzi di contrasto: ossa Ca(Z=20), arterie (I, Z=53 iniettato), apparato digerente Ba (Z=56); TAC; distruzione di tessuti tumorali; diffr.: struttura di molecole organiche complesse

Assorbimento dei raggi X

- i raggi X sono assorbiti nella materia per effetto fotoelettrico, effetto Compton e, per E>1.02 MeV, produzione di coppie e+e-
- la legge dell'assorbimento è esponenziale

• μ_{H2O} ~ 1 cm⁻¹ per X da 10 keV (dopo 1 cm di H_2O l'intensità si riduce ad 1/e = 1/2.72 = 37%; dopo 2 a 1/e² = 13.5% etc.) μ_{Cu} ~ 1.9 10³ cm⁻¹ $\mu_{O,gas}$ ~ 7.5 10⁻³ cm⁻¹



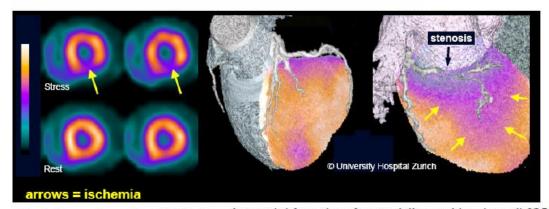
Assorbimento dei raggi X (2)

la differenza di assorbimento è usata per ottenere
 l'immagine: µ dipende da Z del materiale (oltre ad E_x)

una delle prime immagini ottenute da Röntgen 22 dicembre 1895

l'immagine fu pubblicata sul NYTimes del 16 gennaio 1896 → agli inizi di febbraio 1896 le prime immagini a scopo diagnostico sono registrate negli USA lastra fotografica

La scoperta dei raggi X: 1° PN per la Fisica


Wilhelm Conrad Röntgen 1845-1923 PN per la Fisica 1901

Augusto Righi, Bologna, 1850--1920

... e la mano del suo meccanico (Museo di Fisica)

Perfusione miocardica SPECT di una ischemia sotto sforzo (stress) e a riposo (rest)

Immagini fuse via software della combinazione di SPEC con ^{99m}Tc-tetrofosmin e di una TAC a 64 fette

you don't really understand something unless you can explain it to your gradmother *Albert Einstein*

Fine della microfisica

FLN mag 11