Soluzioni degli esercizi

numero di compiti dati dal CAPO: 80

numero di soluzioni 480

Compito 1.

Formula risolutiva: $c = (c_1 + c_2 + c_3 + c_4 + c_5)/5$

Valor medio del calore specifico = $0.211E+04 \text{ J/(kg}\cdot\text{K)}$

Formula risolutiva: $T = P \cdot V / (n \cdot R)$, n = m / M

con P = pressione, V = volume, m = massa, M = peso molecolare

Temperatura = 0.2014E+04 K

Relazione di De Broglie: $\lambda = h / (m \cdot v)$

con h = costante di Planck, m,v = massa e velocità del proiettile

 λ De Broglie = 0.529E-30 cm

Formula risolutiva: $N_p = N_{lanci} \cdot s / S$,

con s = superficie totale dei fori = $n_{\text{fori}} \cdot \pi \cdot r^2 e$ S = superficie della parete = $\pi \cdot R^2$

con r = raggio dei fori e R = raggio della parete

Numero più probabile sassi = 1

Formula risolutiva: $U = (3/2) \cdot n \cdot R \cdot T = (3/2) \cdot P \cdot V$

Energia interna = 0.799E+04 joule

Formula risolutiva: $I_2 / I_0 = \cos^2(\theta_1) \cdot \cos^2(\theta_2)$

Frazione I iniziale emergente = 0.503E-01

Compito 2.

Formula risolutiva: $c = (c_1+c_2+c_3+c_4+c_5)/5$

Valor medio del calore specifico = $0.371E+04 \text{ J/(kg}\cdot\text{K)}$

Formula risolutiva: $P = Q / t = k \cdot S \cdot |T_e - T_i| / x$

con k = conducibilità termica, S = area, $T_{i,e}$ = temperatura interna ed esterna e x = spessore

Potenza necessaria = 0.146E+02 kcal/h

Dalla relazione di De Broglie: $v = h / (\lambda \cdot m)$

con h = costante di Planck, λ,m = lunghezza d'onda e massa dell'elettrone

Velocità elettr. = 0.106E+06 m/sec

Formula risolutiva: $N_r = N_{lanci} \cdot (1 - s / S)$,

con s = superficie totale dei fori = $n_{\text{fori}} \cdot \pi \cdot r^2$ e S = superficie della parete = l^2

Numero più probabile di rimbalzi = 560

Formula risolutiva: $\Delta E = c \cdot m \cdot \Delta T = c \cdot \rho \cdot V \cdot \Delta T$

con c = calore specifico dell'acqua = $4186 \text{ J/(kg} \cdot \text{K}) = 4.186 \cdot 10^7 \text{ erg/(g} \cdot \text{K}), \rho = \text{densità dell'acqua} =$

 $1000 \text{ kg/m}^3 = 1 \text{ g/cm}^3$, V = volume dell'acqua

Energia = 0.5268E+05 J

Formula risolutiva: $a_{lim} = \arcsin(n_2 / n_1)$

Angolo limite = 0.465E+02 gradi

Compito 3.

Formula risolutiva: $N_r = N_{lanci} \cdot (1 - s / S)$,

con s = superficie totale dei fori e S = superficie della parete

Numero più probabile di rimbalzi = 81

Formula risolutiva: $Q = c_v \cdot m \cdot (T_2 - T_1)$

dove c_v = calore specifico, m = massa

Quantità di calore = 0.242E+03 cal = 0.101E+11 erg

 n^{o} fotoni = energia emessa dalla lampadina in 1 sec. / energia di un fotone = $P / (h \cdot f)$

con h = costante di Planck

Numero fotoni emessi = 0.331E+21

Formula risolutiva: $p_{media} = (p_1+p_2+p_3+p_4+p_5) / 5$

Pressione media = 0.272E+03 kPa

Dalla legge di Gay-Lussac [p/T = p_0 /T $_0$] si ricava: $p = p_0 \cdot T/T_0 = p_0 \cdot (T_0 + dT)/T_0$ dove $p_0 = 1$ atm $F = p \cdot S = p \cdot 2 \cdot \pi \cdot r \cdot h \cdot (1.095/100)$

forza sull'1.095% della superficie laterale = 0.193E+04 N

Formula risolutiva: $I_2 / I_0 = \cos^2(\theta_1) \cdot \cos^2(\theta_2)$ Frazione I iniziale emergente = 0.124E+00

Compito 4.

Formula risolutiva: $V_{\text{medio}} = (V_1 + V_2 + V_3)/3$

con $V_i = \pi \cdot r_i^2 \cdot h_i$, dove $r_i = raggio$ base, $h_i = altezza$

Valor medio del volume = $0.342E-02 \text{ m}^3$

Formula risolutiva: Energia = $\rho \cdot V \cdot L_f$

con ρ ,V = densità assoluta e volume del ghiaccio, L_f = calore latente di fusione

Energia = 0.319E+06 cal

Formula risolutiva: $E = h \cdot c / (n \cdot \lambda)$

con h = costante di Planck, c = velocità della luce nel vuoto

Energia fotone = 0.808E-11 erg

Eventi indipendenti: $P_{tot} = P_1 \cdot P_2$, con $P_1 = 1/* e$ $P_2 = 0.955E+00$

Probabilità = 0.147E-01

Formula risolutiva: $T = P \cdot V / (n \cdot R)$, n = m / M

con P = pressione, V = volume, m = massa, M = peso molecolare

Temperatura = 0.8150E+03 K

Formula risolutiva: d = c / f

con c = velocità della luce, f = frequenza

Dimensione = 0.1204E-07 m

Compito 5.

Formula risolutiva: $V_{medio} = (V_1+V_2+V_3)/3$ con $V_i = (4/3) \cdot \pi \cdot r_i^3$, dove $r_i = raggio$ Valor medio del volume = 0.125E-01 m³

Dalla legge di Gay-Lussac [p/T = p_0 / T_0] si ricava: $p = p_0 \cdot T/T_0 = p_0 \cdot (T_0 + dT)/T_0$ dove $p_0 = 1$ atm $F = p \cdot S = p \cdot 2\pi \cdot r \cdot h \cdot (1.095/100)$ forza sull'1.095% della superficie laterale = 0.131E+06 N

Relazione di De Broglie: $\lambda = h / (m \cdot v)$ con h = costante di Planck, <math>m,v = massa e velocità del proiettile λ De Broglie = 0.105E-29 cm

Formula risolutiva: $P = P_1 + P_2 - P_1 \cdot P_2$ con $P_1 = 0.5$, $P_2 = 0.3729E+00$ Probabilità totale = 0.686E+00

Formula risolutiva: $C = Q/\Delta T$ con $\Delta T =$ variazione temperatura Capacità termica = 0.974E-02 kcal/°C = 0.408E+02 joule/°C

Formula risolutiva: $q = f \cdot p / (p - f)$ con f = lunghezza focale, p = distanza neo-lente Distanza immagine = -.4946E+00 m

Compito 6.

Formula risolutiva: $N_p = N_{lanci} \cdot s / S$, con s = superficie totale dei fori e <math>S = superficie della parete Numero più probabile sassi = 13

Formula risolutiva: $e = m \cdot g \cdot h / (t \cdot P)$ con m = massa uomo, g = accelerazione di gravità, <math>h = altezza montagna, t = tempo, P = potenza spesa Efficienza = <math>0.7345E-01

Formula risolutiva: $\lambda = h \cdot c / \Delta E$

con h = costante di Planck, c = velocità della luce nel vuoto

 λ fotoni = 0.203E+03 angstrom

Formula risolutiva: $T_{\text{media}} = (T_1 + T_2 + T_3 + T_4 + T_5) / 5$

Temperat. media = 0.380E+03 °C

Dall'equazione dei gas perfetti: V = nRT / p

Volume = 0.252E+02 litri

Formula risolutiva: $A_2 = cos(\theta_1) \cdot cos(\theta_2) \cdot A_0$ Ampiezza emergente = 0.196E+03 volt/m

Compito 7.

Formula risolutiva: $c_{\text{medio}} = (c_1+c_2+c_3+c_4) / 4$ Calore specifico medio = 0.203E+04 J/(kg·grado)

Formula risolutiva: $e = m \cdot g \cdot h / (t \cdot P)$

con m = massa uomo, g = accelerazione di gravità, <math>h = altezza montagna, t = tempo, P = potenza spesa

Efficienza = 0.7700E-01

Relazione di De Broglie: $\lambda = h / (m \cdot v)$ con h = costante di Planck, <math>m,v = massa e velocità dell'elettrone λ De Broglie (non relativistica) = 0.226E-09 m

Formula risolutiva: $N_r = N_{lanci} \cdot (1 - s / S)$, con s = superficie totale dei fori e S = superficie della parete Numero più probabile di rimbalzi = 819

Formula risolutiva: $\Delta E = c \cdot m \cdot \Delta T = c \cdot \rho \cdot V \cdot \Delta T$ con c = calore specifico dell'acqua = 4186 J/(kg·K) = 4.186·10⁷ erg/(g·K), $\rho = densità dell'acqua = 1000 \text{ kg/m}^3 = 1 \text{ g/cm}^3$, V = volume dell'acqua Energia = 0.1091E+06 J

Formula risolutiva: $a_{lim} = \arcsin(n_2 / n_1)$ Angolo limite = 0.737E+02 gradi

Compito 8.

Formula risolutiva: $P = P_1 \cdot P_2$, con $P_1 = 1/*$ e $P_2 = 0.896E + 00$ Probabilità = 0.853E - 02

Formula risolutiva: Calore latente = $m_{mole\ H2O}\cdot(A-B\cdot t)$ dove $m_{mole\ H2O}$ = massa in grammi di una mole di H_2O Calore latente = 0.105E+05 cal/mole

Formula risolutiva: $\lambda = c \cdot h / (n \cdot E)$ con h = costante di Planck, c = velocità della luce nel vuoto, E = energia Lunghezza d'onda = 0.700E+04 angstrom

Formula risolutiva: $n = (-10+(100-3\cdot(350-A))^{1/2})/3$ Vertebra numero 3

Formula risolutiva: $\Delta E = c \cdot m \cdot \Delta T = c \cdot \rho \cdot V \cdot \Delta T$ con $c = calore specifico dell'acqua = 4186 J/(kg·K) = 4.186·10^7 erg/(g·K), <math>\rho = densit\`a dell'acqua = 1000 \ kg/m^3 = 1 \ g/cm^3, \ V = volume dell'acqua Energia = 0.6761E+12 erg$

Formula risolutiva: $\lambda = v / f$ Lunghezza d'onda = 0.249E+03 cm

Compito 9.

Formula risolutiva: $c_{\text{medio}} = (c_1+c_2+c_3+c_4) / 4$ Calore specifico medio = 0.206E+04 J/(kg·grado)

Formula risolutiva: $C = Q/\Delta T$ con $\Delta T =$ variazione temperatura Capacità termica = 0.143E+00 kcal/°C = 0.600E+03 joule/°C

Formula risolutiva: $\lambda = h \cdot c / \Delta E$ con h = costante di Planck, c = velocità della luce nel vuoto λ fotoni = 0.310E+03 angstrom

Usando la formula ridotta per la soluzione dell'equazione di secondo grado $0.720 \cdot \theta^2 - 10.8 \cdot \theta + 54 - v = 0$ e trasformando i °C in K si ottiene:

Formula risolutiva: $\theta = (5.4 + (5.4^2 - 0.720 \cdot (54 - v))^{1/2})/0.720 + 273.15$

La soluzione col segno meno è da scartare in quanto dà come risultato un valore che non rientra nell'intervallo di applicabilità della formula.

Temperatura = 0.2883E+03 K

Dall'equazione dei gas perfetti: p = nRT / VPressione = 0.687E-05 Atm

Formula risolutiva: $v = \lambda \cdot f$

Velocità dell'onda = 0.516E+04 km/h

Compito 10.

Formula risolutiva: $P = P_1 \cdot P_2$, con $P_1 = 0.5$ e $P_2 = 0.378E + 00$ Probabilità = 0.189E + 00

Formula risolutiva: $dE/dt = k \cdot A \cdot (dT/dx)$, con A = superficie della parete, dT = differenza di temperatura, dx = spessore

Energia/sec = 0.105E+04 joule/sec

Formula risolutiva: $\lambda = h \cdot c / E$ con h = costante di Planck, c = velocità della luce nel vuoto, E = energia fotone Lunghezza d'onda = 0.635E+04 angstrom

Formula risolutiva: $c = (c_1+c_2+c_3+c_4+c_5)/5$ Valor medio del calore specifico = 0.369E+04 J/(kg·K) Dalla legge di Boyle per le trasformazioni isoterme: $p_2 = p_1 V_1 / V_2$ Pressione = 0.102E+07 dyne/cm²

Formula risolutiva: $A_2 = \cos(\theta_1) \cdot \cos(\theta_2) \cdot A_0$ Ampiezza emergente = 0.136E+03 volt/m

Compito 11.

Formula risolutiva: $\gamma = (\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4)/4$

Valor medio della tensione superficiale = 0.198E-01 N/m

Formula risolutiva: $T = P \cdot V / (n \cdot R)$, n = m / M con P = pressione, V = volume, m = massa, M = peso molecolare Temperatura = 0.8202E + 02~K

Formula risolutiva: $E = h \cdot c / \lambda$

con h = costante di Planck, c = velocità della luce nel vuoto

Energia fotone = 0.376E-09 erg

Formula risolutiva: $N_p = int[N_{lanci} \cdot s / S]$, con s = superficie totale dei fori e <math>S = superficie della parete Numero più probabile sassi = 0

Formula risolutiva: $p_{O2} = p_{TOT} \cdot V_{O2} / V_{TOT}$ Pressione parziale = 0.354E+00 mmHg = 0.472E+02 Pa

Formula risolutiva: d = c / f

con c = velocità della luce, f = frequenza

Dimensione = 0.1394E-06 m

Compito 12.

Formula risolutiva: $P = P_1 + P_2 - P_1 \cdot P_2$

con $P_1 = 0.5$, $P_2 = 0.5471E+00$ Probabilità totale = 0.774E+00

Dalla legge di Boyle per le trasformazioni isoterme: $p_2 = p_1 V_1 \ / \ V_2$

Pressione = $0.768E+06 \text{ dyne/cm}^2$

Formula risolutiva: $E = h \cdot c / \lambda$

con h = costante di Planck, c = velocità della luce nel vuoto

Differenza En. livelli = 0.497E+01 eV

Usando la formula ridotta per la soluzione dell'equazione di secondo grado $0.720 \cdot \theta^2 - 10.8 \cdot \theta + 54 - v = 0$ e trasformando i °C in K si ottiene:

Formula risolutiva: $\theta = (5.4 + (5.4^2 - 0.720 \cdot (54 - v))^{1/2})/0.720 + 273.15$

La soluzione col segno meno è da scartare in quanto dà come risultato un valore che non rientra nell'intervallo di applicabilità della formula.

Temperatura = 0.2897E+03 K

Dalla legge di Gay-Lussac $[p/T=p_0/T_0]$ si ricava: $p=p_0\cdot T/T_0=p_0\cdot (T_0+dT)/T_0$ dove $p_0=1$ atm $F=p\cdot S=p\cdot l^2\cdot (1.095/100)$

forza sull'1.095% della superficie = 0.432E+02 N

Formula risolutiva: $q = f \cdot p / (p - f)$

con p,q = posizione dell'oggetto e dell'immagine

Posizione immagine = -0.111E+01 cm.

Compito 13.

Formula risolutiva: $\gamma = (\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4)/4$

Valor medio della tensione superficiale = 0.201E-01 N/m

Formula risolutiva: $C = Q/\Delta T$

con ΔT = variazione temperatura

Capacità termica = 0.441E-02 kcal/°C = 0.184E+02 joule/°C

Formula risolutiva: $E = h \cdot c / \lambda$

con h = costante di Planck, c = velocità della luce nel vuoto

Energia fotone = 0.143E-09 erg

Formula risolutiva: $N_p = int[N_{lanci} \cdot s / S]$,

con s = superficie totale dei fori e S = superficie della parete

Numero più probabile sassi = 18

Formula risolutiva: $U = (3/2) \cdot n \cdot R \cdot T = (3/2) \cdot P \cdot V$

Energia interna = 0.829E+04 joule

Formula risolutiva: G = -d/p

Ingrandimento lineare = -0.111E+01

Compito 14.

Formula risolutiva: $N = Intero[N_{estr} \cdot (4/52) + 0.5]$

Numero approssimativo = 181

Formula risolutiva: $T_{media} = (T_1 + T_2 + T_3)/3$

Valor medio della temperatura = 0.310E+03 K

Relazione di De Broglie: $\lambda = h / (m \cdot v)$

con h = costante di Planck, m,v = massa e velocità del proiettile

 λ De Broglie = 0.552E-30 cm

Formula risolutiva: $V_{\text{medio}} = (V_1 + V_2 + V_3 + V_4 + V_5) / 5$

Volume medio = $0.493E+04 \text{ dm}^3$

Formula risolutiva: $dE/dt = k \cdot A \cdot (dT/dx)$,

con A = superficie della parete, dT = differenza di temperatura, dx = spessore

Formula risolutiva: $f = v / (2 \cdot d)$

Frequenza prima armonica = 0.796E+02 Hz

Compito 15.

Formula risolutiva: $N_p = N_{lanci} \cdot s / S$,

con s = superficie totale dei fori = $n_{\text{fori}} \cdot \pi \cdot r^2 e$ S = superficie della parete = $\pi \cdot R^2$

con r = raggio dei fori e R = raggio della parete

Numero più probabile sassi = 0

Formula risolutiva: $T = P \cdot V / (n \cdot R)$, n = m / M

con P = pressione, V = volume, m = massa, M = peso molecolare

Temperatura = 0.3235E+02 K

Formula risolutiva: $\lambda = h \cdot c / E$

con h = costante di Planck, c = velocità della luce nel vuoto, E = energia fotone

Lunghezza d'onda = 0.519E+04 angstrom

Formula risolutiva: $\gamma = (\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4)/4$

Valor medio della tensione superficiale = 0.197E-01 N/m

Formula risolutiva: $c_v = Q / (m \cdot (T_2 - T_1))$

Calore specifico = $0.372E-01 \text{ cal/g} \cdot ^{\circ}\text{C}$

Formula risolutiva: $I = E / (A \cdot t)$

con E = energia di soglia, A = superficie della pelle, t = tempo di esposizione

Intensità luminosa = $0.4635E-01 \text{ W/m}^2$

Compito 16.

Formula risolutiva: $n = (-10+(100-3\cdot(350-A))^{1/2})/3$

Vertebra numero 4

Formula risolutiva: $c_v = Q / (m \cdot (T_2 - T_1))$

Calore specifico = $0.145E+00 \text{ cal/g} \cdot ^{\circ}\text{C}$

Formula risolutiva: $\lambda = h \cdot c / \Delta E$ con h = costante di Planck, c = velocità della luce nel vuoto λ fotoni = 0.142E+03 angstrom

Formula risolutiva: $c = (c_1 + c_2 + c_3 + c_4 + c_5)/5$ Valor medio del calore specifico = $0.209E+04 \text{ J/(kg}\cdot\text{K)}$

Dalla legge di Gay-Lussac $[p/T = p_0/T_0]$ si ricava: $p = p_0 \cdot T/T_0 = p_0 \cdot (T_0 + dT)/T_0$ dove $p_0 = 1$ atm $F = p \cdot l^2$

forza su una faccia = 0.637E+07 N

Formula risolutiva: $f = -m \cdot p / (1 - m)$ con m = ingrandimento, p = distanza dente-lenteLunghezza focale = 0.3048E-01 m

Compito 17.

Formula risolutiva: $P = P_1 \cdot P_2$, con $P_1 = 0.5$ e $P_2 = 0.875E+00$ Probabilità = 0.438E+00

Formula risolutiva: Calore latente = $m_{\text{mole H2O}} \cdot (A - B \cdot t)$ dove m_{mole H2O} = massa in grammi di una mole di H₂O Calore latente = 0.105E+05 cal/mole

Dalla relazione di De Broglie: $v = h / (\lambda \cdot m)$ con h = costante di Planck, λ ,m = lunghezza d'onda e massa dell'elettrone Velocità elettr. = 0.879E+05 m/sec

Usando la formula ridotta per la soluzione dell'equazione di secondo grado $0.720 \cdot \theta^2 - 10.8 \cdot \theta + 54 - v =$ 0 e trasformando i °C in K si ottiene:

Formula risolutiva: $\theta = (5.4 + (5.4^2 - 0.720 \cdot (54 - v))^{1/2})/0.720 + 273.15$

La soluzione col segno meno è da scartare in quanto dà come risultato un valore che non rientra nell'intervallo di applicabilità della formula.

Temperatura = 0.2926E+03 K

Dalla legge di Gay-Lussac [p/T = p_0/T_0] si ricava: $p = p_0 \cdot T/T_0 = p_0 \cdot (T_0 + dT)/T_0$ dove $p_0 = 1$ atm $F = p \cdot l^2$

forza su una faccia = 0.824E+07 N

Formula risolutiva: $a_{lim} = \arcsin(n_2 / n_1)$

Riflessione totale impossibile! $n_2/n_1 = 0.123E+01$

Compito 18.

Formula risolutiva: $V_{\text{medio}} = (V_1 + V_2 + V_3 + V_4 + V_5) / 5$

Volume medio = $0.382E+04 \text{ dm}^3$

Formula risolutiva: $C = Q/\Delta T$ con $\Delta T =$ variazione temperatura

Capacità termica = 0.108E-01 kcal/°C = 0.454E+02 joule/°C

Relazione di De Broglie: $\lambda = h / (m \cdot v)$

con h = costante di Planck, m,v = massa e velocità del proiettile

 λ De Broglie = 0.730E-30 cm

Formula risolutiva: $\rho_{media} = (\rho_1 + \rho_2 + \rho_3 + \rho_4 + \rho_5) / 5$

Densità media = $0.106E+04 \text{ kg/m}^3$

Dalla legge di Gay-Lussac $[p/T=p_0/T_0]$ si ricava: $p=p_0\cdot T/T_0=p_0\cdot (T_0+dT)/T_0$ dove $p_0=1$ atm $F=p\cdot l^2$

forza su una faccia = 0.106E+08 N

Formula risolutiva: $a_{lim} = arcsin(n_2 / n_1)$

Angolo limite = 0.551E+02 gradi

Compito 19.

Formula risolutiva: $n = (-10+(100-3\cdot(350-A))^{1/2})/3$

Vertebra numero 6

Formula risolutiva: $dE/dt = k \cdot A \cdot (dT/dx)$, con A = superficie della parete, dT = differenza di temperatura, dx = spessore

Energia/sec = 0.119E+04 joule/sec

Relazione di De Broglie: $\lambda = h / (m \cdot v)$ con h = costante di Planck, <math>m,v = massa e velocità del proiettile λ De Broglie = 0.440E-30 cm

Formula risolutiva: $p_{media} = (p_1+p_2+p_3+p_4+p_5) / 5$ Pressione media = 0.265E+03 kPa

Dalla legge di Gay-Lussac [p/T = p_0 / T_0] si ricava: $p = p_0 \cdot T/T_0 = p_0 \cdot (T_0 + dT)/T_0$ dove $p_0 = 1$ atm $F = p \cdot S = p \cdot l^2 \cdot (1.095/100)$ forza sull'1.095% della superficie = 0.754E+02 N

Formula risolutiva: $d = -f \cdot d_0 / (p - f)$ con f = lunghezza focale, p = distanza neo-lente, $d_0 = diametro$ neo Dimensione immagine = 0.7409E-02 m

Compito 20.

Formula risolutiva: $N_r = N_{lanci} \cdot (1 - s / S)$, con s = superficie totale dei fori e S = superficie della parete Numero più probabile di rimbalzi = 864

Formula risolutiva: $E=(3/2)\cdot N\cdot k\cdot T+(1/2)\cdot m\cdot v^2=(3/2)\cdot p\cdot V+(1/2)\cdot m\cdot v^2$ con N= numero di molecole, k= costante di Boltzmann, T= temperatura, m= massa Energia totale =0.160E+08 J

Relazione di De Broglie: $\lambda=h\,/\,(m\cdot v)$ con h= costante di Planck, m,v= massa e velocità del proiettile λ De Broglie = 0.148E-29 cm

Formula risolutiva: $V_{medio} = (V_1 + V_2 + V_3)/3$ con $V_i = \pi \cdot r_i^2 \cdot h_i$, dove $r_i = raggio$ base, $h_i = altezza$ Valor medio del volume = 0.177E-02 m³

Dalla legge di Gay-Lussac [p/T = p_0 / T_0] si ricava: $p = p_0 \cdot T/T_0 = p_0 \cdot (T_0 + dT)/T_0$ dove $p_0 = 1$ atm $F = p \cdot S = p \cdot 2\pi \cdot r \cdot h \cdot (1.095/100)$ forza sull'1.095% della superficie laterale = 0.173E+06 N

Formula risolutiva: $d = -f \cdot d_0 / (p - f)$ con f = lunghezza focale, p = distanza neo-lente, $d_0 = diametro$ neo Dimensione immagine = 0.7383E-02 m

Compito 21.

Formula risolutiva: $P = P_1 + P_2 - P_1 \cdot P_2$ con $P_1 = 1/131$, $P_2 = 0.3242E+00$ Probabilità totale = 0.329E+00

Dalla legge di Gay-Lussac [p/T = p_0 / T_0] si ricava: $p = p_0 \cdot T/T_0 = p_0 \cdot (T_0 + dT)/T_0$ dove $p_0 = 1$ atm $F = p \cdot S = p \cdot 2\pi \cdot r \cdot h \cdot (1.095/100)$ forza sull'1.095% della superficie laterale = 0.131E+06 N

Relazione di De Broglie: $\lambda = h / (m \cdot v)$ con h = costante di Planck, <math>m,v = massa e velocità dell'elettrone λ De Broglie (non relativistica) = 0.234E-09 m

Formula risolutiva: $G = (G_1 + G_2 + G_3 + G_4 + G_5)/5$ Valor medio del gradiente di temperatura = 0.418E+03 K/m

Formula risolutiva: $U = (3/2) \cdot n \cdot R \cdot T = (3/2) \cdot P \cdot V$ Energia interna = 0.101E+05 joule

Formula risolutiva: $\lambda = c / f$ con c = velocità della luce nel vuotoLunghezza d'onda = 0.361E-03 cm

Compito 22.

Formula risolutiva: $p_{media} = (p_1+p_2+p_3+p_4+p_5) / 5$

Pressione media = 0.269E+01 atm

Formula risolutiva: $E = (3/2) \cdot N \cdot k \cdot T + (1/2) \cdot m \cdot v^2 = (3/2) \cdot p \cdot V + (1/2) \cdot m \cdot v^2$

con N = numero di molecole, k = costante di Boltzmann, T = temperatura, m = massa

Energia totale = 0.265E+02 J

Formula risolutiva: $\lambda = h \cdot c / \Delta E$

con h = costante di Planck, c = velocità della luce nel vuoto

 λ fotoni = 0.741E+03 angstrom

Formula risolutiva: $P = P_1 + P_2 - P_1 \cdot P_2$

con $P_1 = 0.5$, $P_2 = 0.2603E+00$ Probabilità totale = 0.630E+00

Formula risolutiva: Calore latente = $m_{mole H2O} \cdot (A - B \cdot t)$

dove $m_{\text{mole H2O}}$ = massa in grammi di una mole di H_2O

Calore latente = 0.106E+05 cal/mole

Formula risolutiva: $q = f \cdot p / (p - f)$

con p,q = posizione dell'oggetto e dell'immagine

Posizione immagine = -0.941E+01 cm.

Compito 23.

Formula risolutiva: $P = (P_1+P_2+P_3+P_4+P_5)/5$

Valor medio della potenza = 0.132E+04 W

Formula risolutiva: $E = (3/2) \cdot N \cdot k \cdot T + (1/2) \cdot m \cdot v^2 = (3/2) \cdot p \cdot V + (1/2) \cdot m \cdot v^2$

con N = numero di molecole, k = costante di Boltzmann, T = temperatura, m = massa

Energia totale = 0.750E+08 J

Relazione di De Broglie: $\lambda = h / (m \cdot v)$ con h = costante di Planck, <math>m,v = massa e velocità del proiettile λ De Broglie = 0.104E-29 cm

Usando la formula ridotta per la soluzione dell'equazione di secondo grado $0.720 \cdot \theta^2 - 10.8 \cdot \theta + 54 - v = 0$ e trasformando i °C in K si ottiene:

Formula risolutiva: $\theta = (5.4 + (5.4^2 - 0.720 \cdot (54 - v))^{1/2})/0.720 + 273.15$

La soluzione col segno meno è da scartare in quanto dà come risultato un valore che non rientra nell'intervallo di applicabilità della formula.

Temperatura = 0.2923E+03 K

Dalla legge di Gay-Lussac [p/T = p_0 / T_0] si ricava: $p = p_0 \cdot T/T_0 = p_0 \cdot (T_0 + dT)/T_0$ dove $p_0 = 1$ atm $F = p \cdot S = p \cdot \pi \cdot d^2 \cdot (1.095/100)$ forza sull'1.095% della superficie = 0.184E+06 N

Formula risolutiva: $f = c / \lambda$

con c = velocità della luce nel vuoto

Frequenza = 0.180E+17 Hz