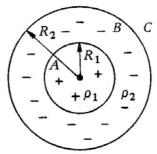
Problema N°. 12

Esercizio n. I.2.6 - Si considerino le due sfere concentriche di raggio R1 ed R_2 disegnate in figura. All'interno della sfera più piccola è contenuta una

carica Q_1 distribuita con densità uniforme ρ_1 , mentre tra le due sfere è contenuta una carica Q2 (di segno opposto) distribuita anch'essa con densità uniforme ρ_2 . Calcolare il campo elettrico \overline{E} ed il potenziale V in un punto generico nelle zone A,B,C(interno alla sfera minore, tra le due sfere, esterno alla sfera più grande).



Soluzione - Il problema ha simmetria sferica e ciò consente l'applicazione della legge di Gauss. Cominciando dalla regione A, Gauss ci dice che al raggio $r < R_1$ è efficace solo la carica contenuta in una sfera di pari raggio ed essa agisce come se fosse posta tutta nel centro del sistema; la carica in questione, essendo ρ_1 uniforme, risulta

$$q_A = \rho_1 \frac{4}{3} \pi r^3 < Q_1.$$

Il campo elettrico nella zona A sarà

$$r < R_1$$
 $E_A = \frac{q_A}{4\pi\epsilon_0 r^2} = \frac{\rho_1 r}{3\epsilon_0}.$

Il potenziale si ricava mediante la $\overline{E} = -\overline{\nabla}V$ (in questo caso $E = -\frac{dV}{dr}$), per cui:

$$r \leqslant R_1$$
, $V_A = -\int E_A dr = -\frac{\rho_1 r^2}{6\epsilon_0} + c_A$, $(c_A = \text{costante})$

Nella zona B vale lo stesso ragionamento solo che la carica efficace è ora tutta Q_1 e quella parte di Q_2 compresa tra i raggi R_1 ed $r < R_2$, ossia (evidenziando i segni del problema):

$$R_1 < r < R_2$$
 $q_B = Q_1 - |\rho_2| \frac{4\pi}{3} (r^3 - R_1^3).$

Il campo elettrico sarà:

$$R_1 < r < R_2 \quad E_B = \frac{q}{4\pi\epsilon_0 r^2} = \frac{1}{4\pi\epsilon_0} \left[\frac{Q_1}{r^2} - |\rho_2| \, \frac{4\pi}{3} \left(r - \frac{R_1^3}{r^2} \right) \right].$$

Il potenziale risulta:

$$V_{B} = -\int E_{B} dr = \frac{Q_{1} + |\rho_{2}| \frac{4\pi}{3} R_{1}^{3}}{4\pi\epsilon_{0}r} - \frac{|\rho_{2}| r^{2}}{6\epsilon_{0}} + c_{B}$$

o anche
$$\left(Q_1 = \rho_1 \frac{4}{3} \pi R_1^3\right)$$

$$V_B = \frac{\rho_1 + |\rho_2|}{3\epsilon_0 r} R_1^3 - \frac{|\rho_2| r^2}{6\epsilon_0} + c_B.$$

Infine nella regione c le cariche da considerare sono tutta Q_1 e tutta Q_2 e si ha (evidenziando i segni del problema):

$$r > R_2 \qquad E_C = \frac{Q_1 - |Q_2|}{4\pi\epsilon_0 r^2}$$

$$V_C = \frac{Q_1 - |Q_2|}{4\pi\epsilon_0 r} + c_C = \frac{\rho_1 R_1^3 - |\rho_2| (R_2^3 - R_1^3)}{3\epsilon_0 r} + c_C.$$

Le tre costanti possono esprimersi tutte in funzione di una sola e, con l'usuale condizione di potenziale nullo all'infinito, otteniamo

$$c_C = 0$$
.

Imponendo la continuità del potenziale per $r = R_2$, abbiamo:

$$\frac{\rho_1 + |\rho_2|}{3\epsilon_0 R_2} R_1^3 - \frac{|\rho_2| R_2^2}{6\epsilon_0} + c_B = \frac{\rho_1 R_1^3 - |\rho_2| (R_2^3 - R_1^3)}{3\epsilon_0 R_2}$$

da cui

$$c_B = -\frac{|\rho_2| \ R_2^2}{6\epsilon_0}.$$

Infine la continuità al raggio $r = R_1$ ci dà:

$$-\frac{\rho_1 R_1^2}{6\epsilon_0} + c_A = \frac{\rho_1 + |\rho_2|}{3\epsilon_0} R_1^2 - \frac{|\rho_2| R_1^2}{6\epsilon_0} + \frac{|\rho_2| R_2^2}{6\epsilon_0}$$

~!!

da cui:

$$c_A = \frac{1}{6\epsilon_0} \left[(3\rho_1 + |\rho_2|) R_1^2 - |\rho_2| R_2^2 \right].$$

A questo punto tutto è stato determinato.