Problema N°. 3

Due cariche elettriche puntiformi uguali $q_1 = q_2 = 1$ pC vengono tenute ferme nel vuoto nei punti dell'asse x di ascisse $x_1 = d = 1$ cm e $x_2 = -d$, rispettivamente.

Una particella di massa $m=10~{\rm g}$ e carica $q=-1~\mu{\rm C}$ oscilla lungo l'asse y sotto l'azione delle forze dovute alle due cariche. q_1 e q_2 . Trovare il periodo delle piccole oscillazioni compiute dalla particella.

Soluzione

5: ha
$$F_1 = F_2 = \frac{99_1}{4\pi E AC^2}$$
 (moduli)

92 F_1 F_2 F_3 F_4 F_5 F_6 F_6 F_7 F_8 F_8 F_8 F_8 F_8 F_8 F_8 F_9 F_9

legge del moto divisue

Posto

$$\dot{y} + K y = 0$$
 σ , anche, $\dot{y} + \omega^2 y = 0$

(con $K = \frac{991}{2\pi m_{\rm e}^2 d^3} = \omega^2$)

La legge del motor y + w y = 0 è quella di un moto armonico semplice di pulsarione w. Il periodo del moto si ottiene ricar dando ele

$$w = \frac{2\pi}{T} \implies T = \text{periodo} = \frac{2\pi}{w}$$

Nel caso in esame or ha

(Ouvroumente $m = 10 g = 10^9 \text{ Kg}$, $d = 10 \text{ m} = 10^9 \text{ m}$ $E_0 = 8.85 \times 10^{-18} \frac{\text{c}^2}{\text{Nm}^2}$; in ricolda poi che pC = 10^{-18} C)