Esercizio

un punto materiale si muove con leggi orarie:

$$x(t) = v_0 t \cos(\omega t)$$
 $y(t) = v_0 t \sin(\omega t)$ $z(t) = 0$

dove v_0 e ω sono due costanti positive

- determinare la velocita' e l'accelerazione del punto
- determinare l'espressione intrinseca della velocita' e dell'accelerazione

il fatto che
$$z(t) = 0$$
 implica che il moto si svolga nel piano xy

$$\vec{r} = \vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + 0\hat{k} = v_0 t \cos(\omega t)\hat{i} + v_0 t \sin(\omega t)\hat{j}$$

derivando il vettore posizione rispetto al tempo si otterra' la velocita' del punto

e derivando la velocita' si otterra l'accelerazione:

$$\vec{\mathbf{v}} = \frac{d\vec{r}}{dt} = \frac{d}{dt} \left(\mathbf{v}_0 t \cos(\omega t) \hat{i} + \mathbf{v}_0 t \sin(\omega t) \hat{j} \right)$$

$$\frac{d}{dt} \left(\mathbf{v}_0 t \cos(\omega t) \hat{i} \right) + \frac{d}{dt} \left(\mathbf{v}_0 t \sin(\omega t) \hat{j} \right)$$

$$\left(\frac{d}{dt} \left(\mathbf{v}_0 t \cos(\omega t) \right) \right) \hat{i} \qquad \left(\frac{d}{dt} \left(\mathbf{v}_0 t \sin(\omega t) \right) \right) \hat{j}$$

$$+ \left(\mathbf{v}_0 t \cos(\omega t) \right) \frac{d\hat{i}}{dt} \qquad \text{ma i versori } \hat{i} = \hat{j} \qquad + \left(\mathbf{v}_0 t \sin(\omega t) \right) \frac{d\hat{j}}{dt}$$

$$+ \left(\mathbf{v}_0 t \cos(\omega t) \right) = \mathbf{v}_0 \cos(\omega t) \qquad \frac{d\hat{i}}{dt} = 0 = \frac{d\hat{j}}{dt} = 0 \qquad \frac{d}{dt} \left(\mathbf{v}_0 t \sin(\omega t) \right) = \mathbf{v}_0 \sin(\omega t) \qquad + \mathbf{v}_0 \omega t \cos(\omega t)$$

$$+ \mathbf{v}_0 t \cos(\omega t) \qquad + \mathbf{v}_0 \omega t \cos(\omega t) \qquad + \mathbf{v}_0 \omega t \cos(\omega t)$$

$$\vec{\mathbf{v}} = \left(\mathbf{v}_0 \cos(\omega t) - \mathbf{v}_0 \omega t \sin(\omega t) - \mathbf{v}_0 \omega t \sin(\omega t) \right) \hat{j}$$

$$+ \left(\mathbf{v}_0 \sin(\omega t) + \mathbf{v}_0 \omega t \cos(\omega t) \right) \hat{j}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left\{ \left(\mathbf{v}_0 cos(\omega t) - \mathbf{v}_0 \omega t \ sen(\omega t) \right) \hat{i} + \left(\mathbf{v}_0 sen(\omega t) + \mathbf{v}_0 \omega t \ cos(\omega t) \right) \hat{j} \right\}$$

$$- \mathbf{v}_0 \omega sen(\omega t) \hat{i} - \left(\mathbf{v}_0 \omega \ sen(\omega t) + \mathbf{v}_0 \omega^2 t \ cos(\omega t) \right) \hat{i} + \mathbf{v}_0 \omega \ cos(\omega t) \hat{j} + \left(\mathbf{v}_0 \omega \ cos(\omega t) - \mathbf{v}_0 \omega^2 t \ sen(\omega t) \right) \hat{j}$$

$$\vec{a} = \left(-2\mathbf{v}_0 \omega sen(\omega t) - \mathbf{v}_0 \omega^2 t \ cos(\omega t) \right) \hat{i} + \left(2\mathbf{v}_0 \omega \ cos(\omega t) - \mathbf{v}_0 \omega^2 t \ sen(\omega t) \right) \hat{j}$$

per quanto riguarda la traiettoria quadrando x(t) e y(t)

e sommandole assieme si ottiene

$$x^{2}(t) = v_{0}^{2}t^{2} \cos^{2}(\omega t)$$
 $y^{2}(t) = v_{0}^{2}t^{2} \sin^{2}(\omega t)$

$$x^{2} + y^{2} = v_{0}^{2}t^{2} \left(\cos^{2}(\omega t) + \sin^{2}(\omega t) \right)$$

$$x^2 + y^2 = v_0^2 t^2$$
 \rightarrow la traiettoria del punto materiale e' una spirale nel piano xy con raggio crescente

la descrizione del moto di un punto materiale in termini intrinseci

implica l'uso dell' ascissa curvilinea S di modo da passare dalla descrizione

in termini di leggi orarie alla descrizione parametrica

$$x=x(t)$$
 $x=x(s)$ equazioni parametriche della traiettoria $y=y(t)$ \Rightarrow $y=y(s)$ espresse in funzione del parametro s $z=z(t)$ $z=z(s)$ "intrinseco" alla traiettoria stessa $z=s(t)$ equazione oraria

la velocita' e l'accelerazione possono essere scritte in modo intrinseco come :

$$\vec{\mathbf{v}} = \frac{ds}{dt}\hat{t} \qquad \vec{a} = \frac{d^2s}{dt^2}\hat{t} + \frac{1}{\rho}(\frac{ds}{dt})^2\hat{u}_c$$

dove S e' l' ascissa curvilinea che parametrizza la traiettoria in questione

$$s = s(t) = \int_{0}^{t} \sqrt{(x'(t'))^{2} + (y'(t'))^{2}} dt' \qquad \text{o anche } \int_{0}^{t} \sqrt{\dot{x}^{2} + \dot{y}^{2}} dt'$$

$$\vec{v} = x'(t')\hat{i} + y'(t')\hat{j}$$
 o anche $\dot{x}\hat{i} + \dot{y}\hat{j}$ e dato che

$$\vec{\mathbf{v}} = \left(\mathbf{v}_0 cos(\omega t) - \mathbf{v}_0 \omega t \ sen(\omega t)\right) \hat{\mathbf{i}} + \left(\mathbf{v}_0 sin(\omega t) + \mathbf{v}_0 \omega t \ cos(\omega t)\right) \hat{\mathbf{j}}$$

$$\int_{0}^{t} \sqrt{\left(v_{0}cos(\omega t') - v_{0}\omega t' sen(\omega t')\right)^{2} + \left(v_{0}sin(\omega t') + v_{0}\omega t' cos(\omega t')\right)^{2}} dt'$$

$$= \int_{0}^{t} \sqrt{v_{0}^{2} + v_{0}^{2}\omega^{2}t'^{2}} dt' \text{ quindi} \qquad S(t) = v_{0} \int_{0}^{t} \sqrt{1 + \omega^{2}t'^{2}} dt'$$

s(t) =

$$s(t) = \mathbf{v}_0 \int_0^t \sqrt{1 + \omega^2 t'^2} dt'$$

dato che integrale e derivata sono operazioni inverse una dell'altra

$$\frac{ds}{dt} = v_0 \sqrt{1 + \omega^2 t^2}$$

$$\frac{d^2s}{dt^2} = v_0 \frac{1}{2} \frac{2\omega^2 t}{\sqrt{1 + \omega^2 t^2}} = v_0 \frac{\omega^2 t}{\sqrt{1 + \omega^2 t^2}}$$

$$\vec{\mathbf{v}} = \mathbf{v}_0 \sqrt{1 + \boldsymbol{\omega}^2 t^2} \ \hat{t}$$

$$\vec{a} = \left(\mathbf{v}_0 \frac{\omega^2 t}{\sqrt{1 + \omega^2 t^2}}\right) \hat{t} + \frac{1}{\rho} \left(\mathbf{v}_0 \sqrt{1 + \omega^2 t^2}\right)^2 \hat{u}_c$$

espressione intrinseca della velocita' e dell'accelerazione espressione cartesiana della velocita' e dell'accelerazione

$$\vec{\mathbf{v}} = \mathbf{v}_0 \sqrt{1 + \omega^2 t^2} \hat{t} \qquad \vec{\mathbf{v}} = \left(\mathbf{v}_0 cos(\omega t) - \mathbf{v}_0 \omega t \ sen(\omega t)\right) \hat{i} \\ + \left(\mathbf{v}_0 sin(\omega t) + \mathbf{v}_0 \omega t \ cos(\omega t)\right) \hat{j} \\ \vec{a} = \left(\mathbf{v}_0 \frac{\omega^2 t}{\sqrt{1 + \omega^2 t^2}}\right) \hat{t} \qquad \vec{a} = \left(-2\mathbf{v}_0 \omega sen(\omega t) - \mathbf{v}_0 \omega^2 t \ cos(\omega t)\right) \hat{i} \\ + \frac{1}{2} \left(\mathbf{v}_0^2 (1 + \omega^2 t^2)\right)^2 \hat{u}_c \qquad + \left(2\mathbf{v}_0 \omega \cos(\omega t) - \mathbf{v}_0 \omega^2 t \ sen(\omega t)\right) \hat{j}$$

per il vettore
$$|d\vec{r}|$$
 si ha $|d\vec{r}| = ds$

quindi
$$\frac{d\vec{r}}{|d\vec{r}|} = \frac{d\vec{r}}{ds} = \hat{t}$$
 ma si ha anche che $\hat{t} = \frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|}$

percio' vi sono due modi equivalenti di determinare il versore tangente

prima maniera:

$$\hat{t} = \frac{d\vec{r}}{ds} = \frac{d\vec{r}}{dt} \frac{dt}{ds}$$
 ma $\frac{d\vec{r}}{dt} = \vec{v}$

e
$$\frac{dt}{ds} = \frac{1}{\frac{ds}{ds}} = \frac{1}{v_0 \sqrt{1 + \omega^2 t^2}} \Rightarrow \hat{t} = \frac{\vec{v}}{v_0 \sqrt{1 + \omega^2 t^2}}$$

$$\hat{t} = \frac{\left(v_0 cos(\omega t) - v_0 \omega t \ sen(\omega t)\right)\hat{i} + \left(v_0 sin(\omega t) + v_0 \omega t \ cos(\omega t)\right)\hat{j}}{v_0 \sqrt{1 + \omega^2 t^2}}$$

ossia

$$\hat{t} = \frac{\left(\cos(\omega t) - \omega t \ sen(\omega t)\right)\hat{i} + \left(\sin(\omega t) + \omega t \ \cos(\omega t)\right)\hat{j}}{\sqrt{1 + \omega^2 t^2}}$$

ovviamente si ottiene lo stesso risultato determinando il modulo di $\overrightarrow{\mathbf{V}}$

e utilizzando la
$$\hat{t} = rac{ec{ extbf{v}}}{|ec{ extbf{v}}|}$$

dalla definizione di derivata di un generico versore \hat{u}

$$\frac{d\hat{u}}{dt} = \frac{d\vartheta}{dt}\hat{n}$$

dove il versore $\,\hat{n}\,$ e' perpendicolare al versore $\,\hat{u}\,$

$$\dfrac{d\hat{u}}{dt}$$
 e'un *vettore* e per determinare \hat{n} bisognera' calcolare

dû

 $\frac{|d\hat{u}|}{dt}$

dunque
$$\frac{d\hat{t}}{dt} = \frac{d\mathcal{9}}{dt}\hat{u}_c$$
 per cui $\hat{u}_c = \frac{\frac{d\hat{t}}{dt}}{\left|\frac{d\hat{t}}{dt}\right|}$

$$\frac{d\hat{t}}{d\hat{t}} = \frac{d\hat{t}}{ds} \frac{ds}{dt}$$
 esprimendo \hat{t} in funzione di s
$$\frac{d\hat{t}}{dt} = \frac{d\hat{t}}{ds} \frac{ds}{dt}$$

$$\frac{d\vartheta}{dt}\hat{u}_{c} = \frac{dt}{ds}\frac{ds}{dt}$$

$$\frac{d\vartheta}{dt}\hat{u}_{c} = \frac{d\hat{t}}{ds}\rho\frac{d\vartheta}{dt}$$

$$\hat{u}_{c} = \frac{d\hat{t}}{ds}\rho$$

$$\hat{u}_{c} = \frac{d\hat{t}}{ds}\rho$$

$$d\hat{t} = \frac{1}{\hat{t}}\hat{u}_{c}$$

se
$$\rho$$
 e' il raggio del cerchio osculatore $s=\rho\vartheta$ $\Rightarrow \frac{ds}{dt}=\vartheta\frac{d\rho}{dt}+\rho\frac{d\vartheta}{dt}$ lungo il tratto d'arco del cerchio osculatore che approssima localmente la traiettoria curva il raggio ρ e' costante quindi $\frac{d\rho}{dt}=0$ percio' $\frac{ds}{dt}=\rho\frac{d\vartheta}{dt}$

il modulo della derivata del versore tangente rispetto all'ascissa curvilinea fornisce il raggio di curvatura della traiettoria Ricapitolando:

$$\hat{t} = \frac{d\vec{r}}{ds}$$
 o anche $\hat{t} = \frac{\vec{V}}{|\vec{V}|}$

$$= \frac{\frac{d\hat{t}}{dt}}{\left|\frac{d\hat{t}}{dt}\right|} \qquad \hat{b} = \hat{t} \times \hat{u}_{c}$$

$$\left| \frac{d\hat{t}}{ds} \right| = \frac{1}{\rho}$$

se la curva fosse fornita nella forma f(x,y)=0 il versore \hat{u}_c , a meno del segno, sarebbe determinabile dal gradiente della funzione

$$\hat{u}_{c} = \frac{\vec{\nabla}f(x, y)}{\left|\vec{\nabla}f(x, y)\right|}$$

Backup Slides