Universo termodinamico

l'universo termodinamico per definizione e' un sistema <u>isolato</u> e per la

disuguaglianza di Clausius
$$\int\limits_{Tr_{Gen}}^{X_f} \frac{dQ}{T} \leq \Delta S \qquad \text{si dovra' sempre avere}$$

$$\Delta S_{univ} = \Delta S_{amb} + \Delta S_{sist} \ge 0$$

Esempi di variazioni di entropia 1)

➤ trasformazioni adiabatiche non cicliche

un sistema che compie trasformazioni adiabatiche e' isolato termicamente

dall'ambiente circostante → l'ambiente non scambia calore con il sistema

ma solo lavoro → dal punto di vista termico l'ambiente non partecipa

alla trasformazione per cui $\Delta S_{amb} = 0$

per la disuguaglianza di Clausius

$$\Delta S_{univ} = \Delta S_{amb_{adiab}} + \Delta S_{sist_{adiab}} \geq 0$$

$$\Delta S_{sist_{adiab}} = \Delta S_{univ}$$
 ma in una adiabatica
$$\Delta S_{amb_{adiab}} = 0$$

se la trasformazione adiabatica *non ciclica* del sistema fosse

reversibile irreversibile
$$\Delta S_{sist_{adiab}} \stackrel{\downarrow}{=} 0 \qquad \Delta S_{sist_{adiab}} > 0$$

$$\Delta S_{univ} \stackrel{\downarrow}{=} 0 \qquad \Delta S_{univ} > 0$$

le trasformazioni adiabatiche reversibili sono *isoentropiche*

Esempi di variazioni di entropia 2)

> sorgente (serbatoio) di calore

"sorgente di calore" > corpo che puo' scambiare una qualsiasi quantita' di calore senza modificare la propria temperatura percio'

→ gli scambi di calore di una sorgente avvengono sempre in modo <u>isotermo</u>

la variazione di entropia di una sorgente a seguito dell'assorbimento

di calore ${\it Q}$ a temperatura ${\it T}$ risulta

$$\Delta S = \int_{A}^{B} \left(\frac{dQ}{T}\right)_{rev} = \frac{1}{T} \int_{A}^{B} \left(dQ\right)_{rev} = \frac{Q}{T}$$

Nota Bene : dovremmo scambiare il calore lungo una isoterma <u>reversibile</u>, ma dato che lo scambio di calore <u>deve</u> avvenire a temperatura costante il risultato e' comunque pari a Q/T

> scambio di calore tra due sorgenti (serbatoi) di calore

supponiamo di scambiare $\,$ la quantita' $Q\,$ di calore $\,$ tra due sorgenti poste a

temperature
$$T_1$$
 e T_2 con $T_2 > T_1$

la sorgente S_I a temperatura T_I acquista il calore $+ \, Q$ e avra'

una variazione di entropia pari a
$$\Delta S_1 = \frac{Q}{T_1}$$

la sorgente S_2 a temperatura T_2 cede il calore $-\mathcal{Q}$ e presentera'

una variazione di entropia pari a
$$\Delta S_2 = -rac{Q}{T_2}$$

l'universo termodinamico e' costituito dalle due sole sorgenti quindi

$$\Delta S_{univ} = \Delta S_1 + \Delta S_2 = \frac{Q}{T_1} - \frac{Q}{T_2} = Q \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

e dato che
$$T_1 < T_2 \Rightarrow \Delta S_{univ} > 0$$

come prevedibile in quanto il processo e' irreversibile

Esempi di variazioni di entropia 3)

> scambio di calore tra un corpo ed una sorgente

supponiamo di scambiare calore tra un corpo di massa \emph{m} , calore specifico \emph{c}

 ${\it costante}\ {\it e}\ {\it temperatura}\ T_1\ {\it ed}\ {\it una}\ {\it sorgente}\ {\it posta}\ {\it a}\ {\it temperatura}\ T_2$

 $con T_2 > T_1$

il processo e' *irreversibile* ma per calcolare la variazione di entropia dovremo

utilizzare trasformazioni *reversibili*

immaginiamo un processo in cui il corpo scambi calore con un' infinita' di sorgenti poste a temperature molto vicine una all'altra ma via via crescenti

$$T_1$$
, $T' = T_1 + dT$, $T'' = T_1 + 2dT$, $T''' = T_1 + 3dT$, $T_2 - dT$, T_2

di modo che possiamo pensare che ogni scambio avvenga in modo <u>isotermo</u> e di modo che T sia trattabile come una variabile indipendente che, cambia con continuita' a partire da $T_I \rightarrow$ se il calore specifico del corpo e' costante con ciascuna sorgente viene scambiata <u>reversibilmente</u> la stessa quantita'

Nota Bene : ad ogni contatto con la sorgente a temperatura appena superiore viene scambiata la stessa quantita' di calore mcdT in quanto la differenza di temperatura tra le sorgenti e' sempre pari a dT

infinitesima di calore dQ = mcdT

$$\Delta S_{corpo} = \int_{X_1}^{X_2} \left(\frac{dQ}{T}\right)_{rev} = \int_{T_1}^{T_2} mc \frac{dT}{T} = mc \, \ln \frac{T_2}{T_1}$$
 la quantita' totale di calore scambiato dal corpo e'
$$Q = mc \int_{T_1}^{T_2} dT = mc (T_2 - T_1)$$

$$\rightarrow$$
 la quantita' totale di calore ceduta dalla sorgente sara' pari a $-Q$

$$\Delta S_{sorg} = -\frac{mc(T_2 - T_1)}{T_2} = \frac{mc(T_1 - T_2)}{T_2}$$
 e la variazione di entropia dell' universo sara'

$$\Delta S_{univ} = mc \ln \frac{T_2}{T_1} + \frac{mc(T_1 - T_2)}{T_2}$$

Nota Bene : $\Delta S_{\it univ}$ riesce sempre maggiore di zero, sia che $\,T_2\,>\,T_1\,$ sia che $\,T_1\,>\,T_2\,$

$$\Delta S_{univ} = mc \ln \frac{T_2}{T_1} + \frac{mc(T_1 - T_2)}{T_2} \quad \text{poniamo} \quad \frac{T_2}{T_1} = x \quad \Rightarrow \quad \Delta S_{univ} = mc \left(\ln x + \frac{1}{x} - 1 \right)$$

mc e' una quantita' positiva ightarrow per determinare i max e i min di ΔS_{univ}

facciamo lo studio della funzione $f(x) = \left(\ln x + \frac{1}{x} - 1\right)$

$$f'(x) = \left(\frac{1}{x} - \frac{1}{x^2}\right)$$
 la derivata prima della funzione si annulla nel punto $x = 1$ ossia se $T_2 = T_1$

$$f''(x) = \left(-\frac{1}{x^2} + \frac{2}{x^3}\right)$$
 la derivata seconda nel punto $x = 1$ e' positiva

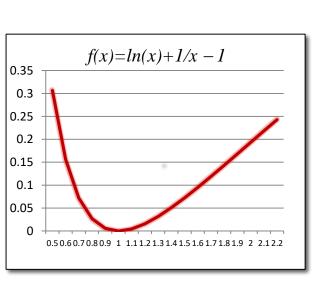
quindi il punto x = 1 e' un punto di minimo assoluto

$$f(r-1) - \left(\ln 1 + \frac{1}{r-1}\right) \Rightarrow f(r-1) - 0$$

$$f(x=1) = \left(\ln 1 + \frac{1}{1} - 1\right) \Rightarrow f(x=1) = 0$$

$$\Delta S_{univ} > 0$$
 sia che $T_2 > T_1$ sia che $T_1 > T_2$

$$\Delta S_{univ} = 0$$
 se e solo se $T_2 = T_1$



Esempi di variazioni di entropia 4)

> scambi di calore tra due corpi

ed il secondo di massa m_2 , calore specifico costante c_2 e temperatura T_2

con $T_2 > T_I$ vengono messi in contatto tra loro in un calorimetro dopo un certo tempo

il primo corpo acquistera' il calore $Q=m_1c_1(T_e-T_1)$ il secondo corpo cedera' il calore $-Q=-m_2c_2(T_2-T_e)$ \Rightarrow $T_e=\frac{m_1c_1T_1+m_2c_2T_2}{m_1c_1+m_2c_2}$

le variazioni di entropia sono

$$\Delta S_1 = \int_{T_1}^{T_e} \left(\frac{dQ}{T} \right)_{rev} = m_1 c_1 \ln \frac{T_e}{T_1} > 0 \quad \text{e} \quad \Delta S_2 = \int_{T_2}^{T_e} \left(\frac{dQ}{T} \right)_{rev} = m_2 c_2 \ln \frac{T_e}{T_2} < 0$$

l'intero processo e' complessivamente irreversibile quindi

 $\Delta S_{univ} = \Delta S_1 + \Delta S_2$ e si deve avere $\Delta S_{univ} > 0$

Esempi di variazioni di entropia 5)

Transizioni di fase

durante i cambiamenti di fase avvengono scambi di calore la quantita' di calore

scambiata per unita' di massa e' detta "*calore latente*"
$$\lambda = \frac{Q}{m}$$

i cambiamenti di fase sono processi <u>isotermi</u> per cui $\Delta S = \frac{Q}{T}$ dunque

la variazione di entropia di m chilogrammi di una sostanza che cambia

fase alla temperatura
$$T$$
 e' $\Delta S = \frac{\lambda m}{T}$

Backup Slides