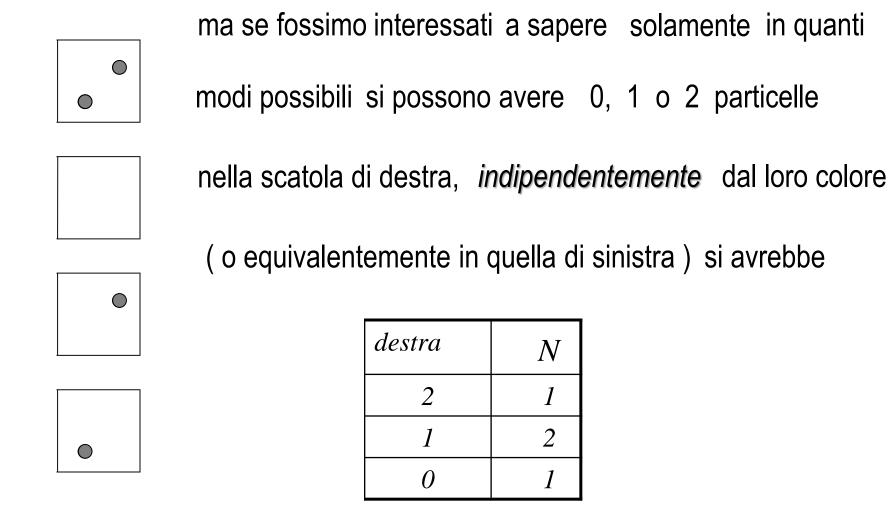

Stati dinamici e stati termodinamici di un sistema


Entropia e probabilita' termodinamica

in generale uno stato macroscopico corrisponde a molti stati dinamici microscopici

siano date due sole particelle, <u>distinguibili</u>, tra loro collocate in due scatole uguali

"micro stati " accessibili al sistema

i possibili stati della tabella costituiscono i cosiddetti "macro stati" del sistema

mentre gli N_i sono detti "numeri di occupazione" dei macrostati

ripetendo il conto con n=6 si avrebbero 64 diverse configurazioni da

disegnare ma il problema si riduce a conteggiare il numero di combinazioni

distinte di N oggetti a k a k percio' conviene usare

la formula matematica:
$$N \equiv \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

dove $n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$

e dove 0! = 1 e 1! = 1

ad es. con n = 6 si avrebbe la seguente tabella :

Sinistra	Destra	N
0	6	1
1	5	6
2	4	15
3	3	20
4	2	15
5	1	6
6	0	1

$$\sum N_i = 64$$

da notare come il numero totale di *micro stati* sia 64

mentre il numero $\it i$ dei $\it macro stati$

e dei numeri di occupazione dei macrostati, $\,N_i\,$

sia limitato a 7

al numero totale di stati possibili $\,$ e' detto " $\it probabilita' termodinamica " <math>\, \Omega_i \,$

Sinistra	Destra	N	Ω_i
0	6	1	1/64 = 0.016
1	5	6	6/64 = 0.094
2	4	15	15/64 = 0.234
3	3	20	20/64 = 0.313
4	2	15	15/64 = 0.234
5	1	6	6/64 = 0.094
6	0	1	1/64 = 0.016

 $N_i = 64$

$$\Omega_i = \frac{N_i}{\sum N_i}$$

lo stato in cui le particelle sono **equipartite** e' quello che si presenta piu' di frequente e dunque e' il piu' probabile

Principio di equipartizione :

lo stato piu' probabile corrisponde all' equipartizione

Entropia e probabilita' termodinamica

in meccanica statistica si perviene alla relazione :

$$S = k \ln \Omega + cost$$

equazione di Boltzmann

k e' la costante di Boltzmann

Entropia e disordine

e' piu' probabile uno stato termodinamico macroscopico cui compete il *maggior* numero possibile di stati dinamici microscopici

ma lo stato equiripartito e' anche lo stato piu' "disordinato"

→ entropia e disordine

Backup Slides