L'EQUAZIONE DI CONTINUITÀ

====================================


Supponiamo di avere un condotto di sezione variabile. Per ipotesi il fluido sia incomprimibile (viscoso o meno): ad un certo volume di fluido entrante nel tubo corrisponderà un ugual volume di fluido uscente .

tubo di flusso

Se all'entrata, nel punto 1, la velocità del fluido è v(1) e la sezione del condotto è A1, nell'intervallo di tempo delta t sarà passato un volume di fluido

deltaV(1)=A(1)*v(1)*delta t

Nel punto 2 la velocità del fluido non sarà necessariamente la stessa del punto 1 : sarà una certa velocità v(2) corrispondente ad una sezione A2 del tubo. Nello stesso intervallo delta t di tempo uscirà quindi dal punto 2 un volume di fluido

deltaV(2)=A(2)*v(2)*delta t

Per l'incomprimibilità del fluido questi volumi saranno uguali e quindi :

A(1)*v(1)*delta t=A(2)*v(2)*delta t

A(1)*v(1)=A(2)*v(2)

Questa equazione è detta equazione di continuità.

La grandezza Av è detta portata in volume Q(v) e dall'equazione di continuità si deduce che in una corrente stazionaria di un fluido incompressibile la portata in volume ha lo stesso valore in ogni punto del fluido :

Q(v)=Av=costante

Nel caso di fluidi viscosi, poichè la velocità varia sulla sezione del condotto, v sarà la velocità media e varrà:

Qv= cost


note  Note
esercizi  Esercizi
esempi  Esempi
approfondimento   Approfondimento matematico: l'equazione di continuità
-->  Fluidi ideali > Equazione di Bernoulli
<--  Fluidi ideali < Ipotesi di lavoro
indice  Indice


Copyright © I.S.H.T.A.R. - March, 1999